Skip to main content
Log in

Blow-up conditions for a semilinear parabolic system on locally finite graphs

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreucci D, Herrero M A, Velázquez J J L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Ann Inst Henri Poincaré Anal Non Linéaire, 1997, 14(1): 1–53

    Article  MathSciNet  ADS  Google Scholar 

  2. Escobedo M, Herrero M A. Boundedness and blow up for a semilinear reaction-diffusion system. J Diff Equations, 1991, 89: 176–202

    Article  MathSciNet  ADS  Google Scholar 

  3. Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain. Annali Mat Pura Appl, 1993, 165(4): 315–336

    Article  MathSciNet  Google Scholar 

  4. Ge H. Kazdan-Warner equation on graph in the negative case. J Math Anal Appl, 2017, 453(2): 1022–1027

    Article  MathSciNet  Google Scholar 

  5. Ge H. The pth Kazdan-Warner equation on graphs. Commun Contemp Math, 2020, 22(6): 1950052

    Article  MathSciNet  Google Scholar 

  6. Ge H, Hua B, Jiang W. A note on Liouville equations on graphs. Proc Amer Math Soc, 2018, 146(11): 4837–4842

    Article  MathSciNet  Google Scholar 

  7. Grigor’yan A, Lin Y, Yang Y. Kazdan-Warner equation on graph. Calc Var Partial Differential Equations, 2016, 55(4): Art 92

  8. Grigor’yan A, Lin Y, Yang Y. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci China Math, 2017, 60(7): 1311–1324

    Article  MathSciNet  Google Scholar 

  9. Horn P, Lin Y, Liu S, Yau S T. Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. J Reine Angew Math, 2019, 757: 89–130

    Article  MathSciNet  Google Scholar 

  10. Hua B, Li R. The existence of extremal functions for discrete Sobolev inequalities on lattice graphs. J Diff Equations, 2021, 305: 224–241

    Article  MathSciNet  ADS  Google Scholar 

  11. Hua B, Mugnolo D. Time regularity and long-time behavior of parabolic p-Laplace equations on infinite graphs. J Diff Equations, 2015, 259(11): 6162–6190

    Article  MathSciNet  ADS  Google Scholar 

  12. Huang X. On uniqueness class for a heat equation on graphs. J Math Anal Appl, 2012, 393(2): 377–388

    Article  MathSciNet  Google Scholar 

  13. Keller M, Lenz D. Dirichlet forms and stochastic completeness of graphs and subgraphs. J Reine Angew Math, 2012, 666: 189–223

    MathSciNet  Google Scholar 

  14. Lin Y, Wu Y. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc Var Partial Differential Equations, 2017, 56(4): Art 102

  15. Lin Y, Wu Y. Blow-up problems for nonlinear parabolic equations on locally finite graphs. Acta Math Sci, 2018, 38B(3): 843–856

    Article  MathSciNet  Google Scholar 

  16. Lin Y, Xie Y. Application of Rothe’s method to a nonlinear wave equation on graphs. B Korean Math Soc, 2022, 59(3): 745–756

    MathSciNet  Google Scholar 

  17. Lin Y, Yang Y. A heat flow for the mean field equation on a finite graph. Calc Var Partial Differential Equations, 2021, 60(6): Art 206

  18. Liu S, Yang Y. Multiple solutions of Kazdan-Warner equation on graphs in the negative case. Calc Var Partial Differential Equations, 2020, 59(5): Art 164

  19. Weber A. Analysis of the physical Laplacian and the heat flow on a locally finite graph. J Math Anal Appl, 2010, 370(1): 146–158

    Article  MathSciNet  Google Scholar 

  20. Wojciechowski R. Heat kernel and essential spectrum of infinite graphs. Indiana Univ Math J, 2009, 58(3): 1419–1442

    Article  MathSciNet  Google Scholar 

  21. Wu Y. Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs. Rev R Acad Cien Serie A Mat, 2021, 115(3): Art 133

  22. Zhang N, Zhao L. Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci China Math, 2018, 61(8): 1481–1494

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Wu.

Ethics declarations

Conflict of Interest The author declares no conflict of interest.

Additional information

This work was partially supported by the Zhejiang Provincial Natural Science Foundation of China (LY21A010016) and the National Natural Science Foundation of China (11901550).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y. Blow-up conditions for a semilinear parabolic system on locally finite graphs. Acta Math Sci 44, 609–631 (2024). https://doi.org/10.1007/s10473-024-0213-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0213-0

Key words

2020 MR Subject Classification

Navigation