Skip to main content
Log in

Some new identities of Rogers-Ramanujan type

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz’s inversions formulas and Jackson’s transformation formula. In terms of application, by specializing certain parameters in the two transformations, four Rogers-Ramanujan type identities associated with moduli 20 are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gasper G, Rahman M. Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications. 2nd ed. Cambridge: Cambridge University Press, 1990

    MATH  Google Scholar 

  2. Srivastava H M, Karlsson P W. Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and Its Applications. New York: John Wiley & Sons Inc, 1985

    Google Scholar 

  3. Gould H W, Hsu L C. Some new inverse series relations. Duke Math J, 1973, 40: 885–891

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlitz L. Some inverse relations. Duke Math J, 1973, 40: 893–901

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu W C. Gould-Hsu-Carlitz inversions and Rogers-Ramanujan identities. I. Acta Math Sinica, 1990, 33(1): 7–12

    MathSciNet  MATH  Google Scholar 

  6. Chu W C, Di Claudio L. Classical partition identities and basic hypergeometric series. Edizioni del Grifo, 2004

  7. Liu Z G. Carlitz inverses, the Rogers-Ramanujan identities and a quintuple product identity. Math Practice Theory, 1995(1): 70–74

  8. Hardy G H, Wright E M. An Introduction to the Theory of Numbers. Sixth ed. Oxford: Oxford University Press, 2008

    Book  MATH  Google Scholar 

  9. Ramanujan S. Collected papers of Srinivasa Ramanujan. Providence, RI: AMS Chelsea Publishing, 2000

    MATH  Google Scholar 

  10. Rogers L J, Ramanujan S. Proof of certain identities in combinatory analysis [Proc Cambridge Philos Soc, 1919, 19: 214–216]}//Collected Papers of Srinivasa Ramanujan. Providence, RI: AMS Chelsea Publ, 2000: 214–215

    Google Scholar 

  11. Schur I. Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche. S.-B. Preuss. Klasse: Akad Wiss Phys Math, 1917: 302–321

    MATH  Google Scholar 

  12. Bailey W N. A note on certain q-identities. Quart J Math, Oxford Ser, 1941, 12: 173–175

    Article  MathSciNet  MATH  Google Scholar 

  13. Bailey W N. Some identities in combinatory analysis. Proc London Math Soc, 1947, 49(2): 421–425

    MathSciNet  MATH  Google Scholar 

  14. Slater L J. A new proof of Rogers’s transformations of infinite series. Proc London Math Soc, 1951, 53(2): 460–475

    Article  MathSciNet  MATH  Google Scholar 

  15. Slater L J. Further identities of the Rogers-Ramanujan type. Proc London Math Soc, 1952, 54(2): 147–167

    Article  MathSciNet  MATH  Google Scholar 

  16. Bailey W N. Identities of the Rogers-Ramanujan type. Proc London Math Soc, 1948, 50(2): 1–10

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen X J, Chu W C. Carlitz inversions and identities of the Rogers-Ramanujan type. Rocky Mountain J Math, 2014, 44(4): 1125–1143

    Article  MathSciNet  MATH  Google Scholar 

  18. Andrews G E. On the proofs of the Rogers-Ramanujan identities//q-Series and Partitions (Minneapolis, MN, 1988), IMA Vol Math Appl, 18. New York: Springer, 1989: 1–14

    MATH  Google Scholar 

  19. Andrews G E. The Theory of Partitions. Cambridge: Cambridge University Press, 1998

    MATH  Google Scholar 

  20. Berndt B C. Ramnaujan’s Notebooks. Rart III. New York: Springer-Verlag, 1991

    Book  Google Scholar 

  21. Garrett K, Ismail M E H, Stanton D. Variants of the Rogers-Ramanujan identities. Adv Appl Math, 1999, 23(3): 274–299

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramanujan S. Problem 584. J Indian Math Soc, 1914, 6: 199–200

    Google Scholar 

  23. Wang C, Chern S. Some basic hypergeometric transformations and Rogers-Ramanujan type identities. Integral Transforms Spec Funct, 2020, 31(11): 873–890

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Z Z, Jia Z Y. More Rogers-Ramanujan type identities. Proc Jangjeon Math Soc, 2012, 15(2): 215–225

    MathSciNet  MATH  Google Scholar 

  25. Zhang Z Z, Li X Q. A class of new m-mutlisum Rogers-Ramanujan identities and applications. Acta Math Sci, 2019, 39A(4): 851–864

    MathSciNet  MATH  Google Scholar 

  26. Andrews G E. Combinatorics and Ramanujan’s “lost” notebook//Surveys in Combinatorics 1985 (Glasgow, 1985), London Math Soc Lecture Note Ser, 103. Cambridge: Cambridge University Press, 1985: 1–23

    MATH  Google Scholar 

  27. Agarwal A K, Bressoud D M. Lattice paths and multiple basic hypergeometric series. Pacific J Math, 1989, 136 (2): 209–228

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers L J. On two theorems of combinatory analysis and some allied identities. Proc Lond Math Soc, 1917, 16: 315–336

    Article  MATH  Google Scholar 

  29. Heine E. Handbuch der Kugelfunctionen. Theorie und Anwendungen. Band I, II. Thesaurus Mathematicae, No. 1. Wuürzburg: Physica-Verlag, 1961

    MATH  Google Scholar 

  30. Heine E. Über die Reihe \(1 + {{({q^\alpha } - 1)({q^\beta } - 1)} \over {(q - 1)({q^\gamma } - 1)}}x + {{({q^\alpha } - 1)({q^{\alpha + 1}} - 1)({q^\beta } - 1)({q^{{\beta _1}}} - 1)} \over {(q - 1)({q^2} - 1)({q^\gamma } - 1)({q^{\gamma + 1}} - 1)}} + \cdots \). (Aus einem Schreiben an Lejeune Dirichlet). J Reine Angew Math, 1846, 32: 210–212

    MATH  Google Scholar 

  31. Slater L J. Generalized Hypergeometric Functions. Cambridge: Cambridge University Press, 1966

    MATH  Google Scholar 

  32. Fine N J. Basic Hypergeometric Series and Applications. Providence, RI: American Mathematical Society, 1988

    Book  MATH  Google Scholar 

  33. Daum J A. The basic analogue of Kummer’s theorem. Bull Amer Math Soc, 1942, 48: 711–713

    Article  MathSciNet  MATH  Google Scholar 

  34. Andrews G E. On the q-analog of Kummer’s theorem and applications. Duke Math J, 1973, 40: 525–528

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim Y S, Rathie A K, Lee C H. On q-analogue of Kummer’s theorem and its contiguous results. Commun Korean Math Soc, 2003, 18: 151–157

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim Y S, Rathie A K, Choi J. Three-term contiguous functional relations for basic hypergeometric series 2φ1. Commun Korean Math Soc, 2005, 20(2): 395–403

    Article  MathSciNet  MATH  Google Scholar 

  37. Harsh H V, Kim Y S, Rakha M A, Rathie A K. A study of q-contiguous function relations. Commun Korean Math Soc, 2016, 31(1): 65–94

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Gu.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (12271234).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Zhang, Z. Some new identities of Rogers-Ramanujan type. Acta Math Sci 44, 129–142 (2024). https://doi.org/10.1007/s10473-024-0106-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0106-2

Key words

2020 MR Subject Classification

Navigation