Skip to main content
Log in

The Riemann problem for isentropic compressible Euler equations with discontinuous flux

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux, more specifically, for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x = x(t). We prove that this problem admits global Radon measure solutions for all kinds of initial data. The over-compressing condition on the discontinuity x = x(t) is not enough to ensure the uniqueness of the solution. However, there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x = x(t) + 0, in addition to the full adhesion condition on its left-side. As an application, we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas. In particular, we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas. This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Jaffré J, Gowda G. Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J Numer Anal, 2004, 42(1): 179–208

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Siddhartha M, Gowda G. Optimal entropy solutions for conservation laws with discontinuous flux-functions. J Hyperbolic Differ Equ, 2005, 2(4): 783–837

    Article  MathSciNet  MATH  Google Scholar 

  3. Aekta A, Manas S, Abhrojyoti S, Ganesh V. Solutions with concentration for conservation laws with discontinuous flux and its applications to numerical schemes for hyperbolic systems. Stud Appl Math, 2020, 145(2): 247–290

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreianov B. New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM: Proceedings and Surveys, 2015, 50: 40–65

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreianov B, Karlsen K, Risebro N. A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch Rational Mech Anal, 2011, 201(1): 27–86

    Article  MathSciNet  MATH  Google Scholar 

  6. Berthelin F, Vovelle J. A Bhatnagar-Gross-Krook approximation to scalar conservation laws with discontinuous flux. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2010, 140(5): 953–972

    Article  MathSciNet  MATH  Google Scholar 

  7. Darko M. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30(4): 1191–1210

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding M, Li Y. An overview of piston problems in fluid dynamics//Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proc Math Stat. Heidelberg: Springer, 2014: 161–191

    Chapter  Google Scholar 

  9. Fazio R, LeVeque R. Moving mesh methods for one-dimensional hyperbolic problems using CLAWPACK. Comp Math Appl, 2003, 45(1): 273–298

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao L, Qu A, Yuan H. Delta shock as free piston in pressureless Euler flows. Z Angew Math Phys, 2022, 73(3): Art 114

  11. Gimse T, Risebro N. Solution of Cauchy problem for a conservation law with discontinuous flux function. SIAM J Math Anal, 1992, 23(3): 635–648

    Article  MathSciNet  MATH  Google Scholar 

  12. Guerra G, Shen W. The Cauchy problem for a non strictly hyperbolic 3 × 3 system of conservation laws arising in polymer flooding. Commun Math Sci, 2021, 19(6): 1491–1507

    Article  MathSciNet  Google Scholar 

  13. Guerra G, Shen W. Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous fux. SIAM J Math Anal, 2019, 51(4): 3112–3144

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin Y, Qu A, Yuan H. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Commun Pure Appl Anal, 2021, 20(7): 2665–2685

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin Y, Qu A, Yuan H. Radon measure solutions to Riemann problems for isentropic compressible Euler equations of polytropic gases. Commun Appl Math Comput, 2023, 7(3): 1097–1129

    Article  MathSciNet  MATH  Google Scholar 

  16. LeFloch P, Thanh M. The Riemann problem for the shallow water equations with discontinuous topography. Commun Math Sci, 2007, 5(4): 865–885

    Article  MathSciNet  MATH  Google Scholar 

  17. LeVeque R. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002

    Book  MATH  Google Scholar 

  18. Li J, Sheng W, Zhang T, Zheng Y. Two-dimensional Riemann problems: from scalar conservation laws to compressible Euler equations. Acta Mathematica Scientia, 2009, 29B(4): 777–802

    MathSciNet  MATH  Google Scholar 

  19. Li T, Yu W. Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke University Math Series V, 1985

    MATH  Google Scholar 

  20. Liu T. The free piston problem for gas dynamics. J Differ Equ, 1978, 30(2): 175–191

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu T, Smoller J. On the vacuum state for the isentropic gas dynamics equations. Adv Appl Math, 1980, 1(4): 345–359

    Article  MathSciNet  MATH  Google Scholar 

  22. Nedeljkov M. Shadow waves: entropies and interactions for delta and singular shocks. Arch Rational Mech Anal, 2010, 197(2): 489–537

    Article  MathSciNet  MATH  Google Scholar 

  23. Qu A, Yuan H. Measure solutions of one-dimensional piston problem for compressible Euler equations of Chaplygin gas. J Math Anal Appl, 2019, 481(1): 123486

    Article  MathSciNet  MATH  Google Scholar 

  24. Qu A, Yuan H. Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton’s sine-squared law. J Differ Equ, 2020, 269(1): 495–522

    Article  MathSciNet  MATH  Google Scholar 

  25. Qu A, Yuan H, Zhao Q. Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge. Z Angew Math Mech, 2020, 100(3): e201800225

    Article  MathSciNet  Google Scholar 

  26. Qu A, Yuan H, Zhao Q. High Mach number limit of one-dimensional piston problem for non-isentropic compressible Euler equations: polytropic gas. J Math Phys, 2020, 61(1): 011507

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen W. On the Cauchy problems for polymer flooding with gravitation. J Differ Equ, 2016, 261(1): 627–653

    Article  MathSciNet  MATH  Google Scholar 

  28. Takeno S. Free piston problem for isentropic gas dynamics. Japan J Indust Appl Math, 1995, 12(2): 163–194

    Article  MathSciNet  MATH  Google Scholar 

  29. Towers J. Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J Numer Anal, 2000, 38(2): 681–698

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aifang Qu.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (11871218, 12071298), and in part by the Science and Technology Commission of Shanghai Municipality (21JC1402500, 22DZ2229014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Qu, A. & Yuan, H. The Riemann problem for isentropic compressible Euler equations with discontinuous flux. Acta Math Sci 44, 37–77 (2024). https://doi.org/10.1007/s10473-024-0102-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0102-6

Key words

2020 MR Subject Classification

Navigation