Skip to main content
Log in

Minimal Foliations for the High-Dimensional Frenkel-Kontorova Model

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

For the high-dimensional Frenkel-Kontorova (FK) model on lattices, we study the existence of minimal foliations by depinning force. We introduce the tilted gradient flow and define the depinning force as the critical value of the external force under which the average velocity of the system is zero. Then, the depinning force can be used as the criterion for the existence of minimal foliations for the FK model on a ℤd lattice for d > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry S, Le Daeron P Y. The discrete Frenkel-Kontorova model and its extensions. Phys D, 1983, 8: 381–422

    Article  MATH  Google Scholar 

  2. Baesens C, MacKay R S. Gradient dynamics of tilted Frenkel-Kontorova models. Nonlinearity, 1998, 11: 949–964

    Article  MATH  Google Scholar 

  3. Bangert V. Mather sets for twist maps and geodesics on tori. Dynamics Reported, 1988, 1: 1–56

    Article  MATH  Google Scholar 

  4. Bangert V. On minimal laminations of the torus. Ann Inst H Poincaré Anal Non Linéaire, 1989, 6: 95–138

    Article  MATH  Google Scholar 

  5. Blank M L. Metric properties of minimal solutions of discrete periodical variational problems. Nonlinearity, 1989, 2: 1–22

    Article  MATH  Google Scholar 

  6. de la Llave R, Valdinoci E. Ground states and critical points for generalized Frenkel-Kontorova models in ℤd. Nonlinearity, 2007, 20: 2409–2424

    Article  MATH  Google Scholar 

  7. de la Llave R, Valdinoci E. Ground states and critical points for Aubry-Mather theory in statistical mechanics. J Nonlinear Sci, 2010, 20: 153–218

    Article  MATH  Google Scholar 

  8. Golé C. A new proof of the Aubry-Mather’s theorem. Math Z, 1992, 210: 441–448

    Article  MATH  Google Scholar 

  9. Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York: Cambridge University Press, 1995

    Book  MATH  Google Scholar 

  10. Knibbeler V, Mramor B, Rink B, et al. The laminations of a crystal near an anti-continuum limit. Nonlinearity, 2014, 27: 927–952

    Article  MATH  Google Scholar 

  11. Koch H, de la Llave R, Radin C, et al. Aubry-Mather theory for functions on lattices. Discrete Contin Dyn Syst (Ser A), 1997, 3: 135–151

    Article  MATH  Google Scholar 

  12. Kolmogolov A N, Fomin S V. Elements of the Theory of Functions and Functional Analysis. New York: Dover Publications, 1999

    Google Scholar 

  13. Mather J N. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. Topology, 1982, 21: 457–467

    Article  MATH  Google Scholar 

  14. Mather J N. A criterion for the non-existence of invariant circles. Publ Math IHES, 1986, 63: 153–204

    Article  MATH  Google Scholar 

  15. Mather J N. Modulus of continuity for Peierls’s barrier. Periodic Solutions of Hamiltonian Systems and Related Topics, 1987, 209: 177–202

    Article  MATH  Google Scholar 

  16. Miao X Q, Qin W X, Wang Y N. Secondary invariants of Birkhoff minimizers and heteroclinic orbits. J Differential Equations, 2016, 260: 1522–1557

    Article  MATH  Google Scholar 

  17. Moser J. Minimal solutions of variational problems on a torus. Ann Inst H Poincaré Anal Non Linéaire, 1986, 3: 229–272

    Article  MATH  Google Scholar 

  18. Mramor B, Rink B. Ghost circles in lattice Aubry-Mather theory. J Differential Equations, 2012, 252: 3163–3208

    Article  MATH  Google Scholar 

  19. Mramor B, Rink B. On the destruction of minimal foliations. Proc Lond Math Soc, 2014, 108: 704–737

    Article  MATH  Google Scholar 

  20. Mramor B, Rink B. A dichotomy theorem for minimizers of monotone recurrence relations. Ergodic Theory Dynam Systems, 2015, 35: 215–248

    Article  MATH  Google Scholar 

  21. Mramor B, Rink B. Continuity of the Peierls barrier and robustness of laminations. Ergodic Theory Dynam Systems, 2015, 35: 1263–1288

    Article  MATH  Google Scholar 

  22. Mramor B. Monotone Variational Recurrence Relations [D]. Amsterdam: VU University Amsterdam, 2012

    Google Scholar 

  23. Qin W X, Wang Y N. Invariant circles and depinning transition. Ergodic Theory Dynam Systems, 2018, 38: 761–787

    Article  MATH  Google Scholar 

  24. Senn W M. Phase-locking in the multidimensional Frenkel-Kontorova model. Math Z, 1998, 227: 623–643

    Article  MATH  Google Scholar 

  25. Su X F, de la Llave R. Percival Lagrangian approach to the Aubry-Mather theory. Expo Math, 2012, 30: 182–208

    Article  MATH  Google Scholar 

  26. Wang K, Miao X Q, Wang Y N, et al. Continuity of depinning force. Adv Math, 2018, 335: 276–306

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Miao  (缪雪晴).

Additional information

The first author was supported by the National Natural Science Foundation of China (11701298).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Ge, J., Qin, W. et al. Minimal Foliations for the High-Dimensional Frenkel-Kontorova Model. Acta Math Sci 43, 564–582 (2023). https://doi.org/10.1007/s10473-023-0207-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0207-3

Key words

2010 MR Subject Classification

Navigation