Skip to main content
Log in

The Singular Convergence of a Chemotaxis-Fluid System Modeling Coral Fertilization

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The singular convergence of a Chemotaxis-fluid system modeling coral fertilization is justified in spatial dimension three. More precisely, it is shown that a solution of parabolic-parabolic type chemotaxis-fluid system modeling coral fertilization

$$\left\{ {\begin{array}{*{20}{c}} {u_t^ \in+ ({u^ \in } \cdot \nabla ){u^ \in } - \Delta {u^ \in } + \nabla {P^ \in } =- ({s^ \in } + {e^ \in })\nabla \phi ,} \\ {\nabla\cdot {u^ \in } = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {e_t^ \in+ ({u^ \in } \cdot \nabla ){e^ \in } - \Delta {e^ \in } =- {s^ \in }{e^ \in }\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {s_t^ \in+ ({u^ \in } \cdot \nabla ){s^ \in } - \Delta {s^ \in } =- \nabla\cdot ({s^ \in }\nabla {c^ \in }) - {s^ \in }{e^ \in },\;\;} \\ {{ \in ^{ - 1}}(c_t^ \in+ ({u^ \in } \cdot \nabla ){c^ \in }) = \Delta {c^ \in } + {e^ \in },\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {({u^ \in },{e^ \in },{s^ \in },{c^ \in }){|_{t = 0}} = ({u_0},{e_0},{s_0},{c_0})\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right.$$

converges to that of the parabolic-elliptic type chemotaxis-fluid system modeling coral fertilization

$$\left\{ {\matrix{{u_t^\infty + \left( {{u^\infty } \cdot \nabla } \right){u^\infty } - \Delta {u^\infty } + \nabla {{\bf{P}}^\infty } = - \left( {{s^\infty } + {e^\infty }} \right)\nabla \phi ,} \hfill \cr {\nabla \cdot \le {u^\infty } = 0,} \hfill \cr {e_t^\infty + \left( {{u^\infty } \cdot \nabla } \right){e^\infty } - \Delta {e^\infty } = - {s^\infty }{e^\infty },} \hfill \cr {s_t^\infty + \left( {{u^\infty } \cdot \nabla } \right){s^\infty } - \Delta {s^\infty } = - \nabla \cdot \left( {{s^\infty }\nabla {c^\infty }} \right) - {s^\infty }{e^\infty },} \hfill \cr {0 = \Delta {c^\infty } + {e^\infty },} \hfill \cr {\left( {{u^\infty },{e^\infty },{s^\infty }} \right)\left| {_{t = 0}} \right. = \left( {{u_0},{e_0},{s_0}} \right)} \hfill \cr } } \right.$$

in a certain Fourier-Herz space as ϵ−1 → 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrapatoso K, Mischler S. Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291–345

    Article  MATH  Google Scholar 

  2. Chae M, Kang K, Lee J. Existence of smooth solutions to coupled chemotaxis—fluid equations. Discrete Contin Dyn Syst, 2013, 33: 2271–2297

    Article  MATH  Google Scholar 

  3. Chae M, Kang K, Lee J, Lee K A. A regularity condition and temporal asymptotics for chemotaxis-fluid equations. Nonlinearity, 2018, 31: 351–387

    Article  MATH  Google Scholar 

  4. Bazant M, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems. Phys Rev E, 2004, 70(2): 021506

    Article  Google Scholar 

  5. Biler P, Brandolese L. On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modeling chemotaxis. Studia Math, 2009, 193: 241–261

    Article  MATH  Google Scholar 

  6. Keller E, Segel L. Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26: 399–415

    Article  MATH  Google Scholar 

  7. Carrapatoso K, Mischler S. Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation. Comm Partial Differential Equations, 2017, 42: 291–345

    Article  MATH  Google Scholar 

  8. Raczynski A. Stability property of the two-dimensional Keller-Segel model. Asymptot Anal, 2009, 61: 35–59

    MATH  Google Scholar 

  9. Kurokiba M, Ogawa T. Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space. J Differential Equations, 269(10): 8959–8997

  10. Kurokiba M, Ogawa T. Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces. Journal of Evolution Equations, 2020, 20(2): 421–457

    Article  MATH  Google Scholar 

  11. Sun J, Cui S. Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces. Nonlinear Anal Real World Appl, 2019, 48: 445–465

    Article  MATH  Google Scholar 

  12. Schweyer R. Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model. arXiv:1403.4975

  13. Winkler M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748–767

    Article  MATH  Google Scholar 

  14. Blanchet A, Carrillo J, Masmoudi N. Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2. Commun Pure Appl Math, 2008, 61: 1449–1481

    Article  MATH  Google Scholar 

  15. Blanchet A, Dolbeault J, Perthame B. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differential Equations, 2006, 2006(44): 1–33

    MATH  Google Scholar 

  16. Corrias L, Perthame B, Zaag H. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J Math, 2004, 72: 1–28

    Article  MATH  Google Scholar 

  17. Yang M, Fu Z, Sun J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J Differential Equations, 2009, 266: 5867–5894

    Article  MATH  Google Scholar 

  18. Bae H, Biswas A, Tadmor E. Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces. Arch Ration Mech Anal, 2012, 205(3): 963–991

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunwei Fu  (傅尊伟).

Additional information

Supported by the NSFC (12161041, 12001435 and 12071197), the training program for academic and technical leaders of major disciplines in Jiangxi Province (20204BCJL23057), the Natural Science Foundation of Jiangxi Province (20212BAB201008), the Educational Commission Science Programm of Jiangxi Province (GJJ190272) and that Natural Science Foundation of Shandong Province (ZR2021MA031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Sun, J., Fu, Z. et al. The Singular Convergence of a Chemotaxis-Fluid System Modeling Coral Fertilization. Acta Math Sci 43, 492–504 (2023). https://doi.org/10.1007/s10473-023-0202-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0202-8

Key words

2010 MR Subject Classification

Navigation