Skip to main content
Log in

The Regularized Solution Approximation of Forward/Backward Problems for a Fractional Pseudo-Parabolic Equation with Random Noise

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation \({u_t} + {\left({- \Delta} \right)^{{s_1}}}{u_t} + \beta {\left({- \Delta} \right)^{{s_2}}}u = F\left({u,x,t} \right)\) subject to random Gaussian white noise for initial and final data. Under the suitable assumptions s1, s2 and β, we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard, which are mainly driven by random noise. Moreover, we propose the Fourier truncation method for stabilizing the above ill-posed problems. We derive an error estimate between the exact solution and its regularized solution in an \(\mathbb{E}\,\,\left\| {\, \cdot \,} \right\|_{{H^{{s_2}}}}^2\) norm, and give some numerical examples illustrating the effect of above method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molina-García D, Pham T M, Paradisi P, Manzo C, Pagnini G. Fractional kinetics emerging from ergodicity breaking in random media. Physical Review E, 2016, 94: 052147

    Article  Google Scholar 

  2. Plociniczak L. Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications. Communications in Nonlinear Science and Numerical Simulation, 2015, 24: 169–183

    Article  MathSciNet  MATH  Google Scholar 

  3. Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press, 2010

    Book  MATH  Google Scholar 

  4. Del-Castillo-Negrete D, Chacón L. Parallel heat transport in integrable and chaotic magnetic fields. Physics of Plasmas, 2012, 19: 355–364

    Article  Google Scholar 

  5. Zhang Y, Meerschaert M M, Neupauer R M. Backward fractional advection dispersion model for contaminant source prediction. Water Resources Research, 2016, 52: 2462–2473

    Article  Google Scholar 

  6. Bueno-Orovio A, Kay D, Grau V, Rodriguez B, Burrage K. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. Journal of The Royal Society Interface, 2014, 11: 20140352

    Article  Google Scholar 

  7. Amiraliyev G M, Cimenb E, Amirali I, Cakir M. High-order finite difference technique for delay pseudo-parabolic equations. Journal of Computational and Applied Mathematics, 2017, 321: 1–7

    Article  MathSciNet  MATH  Google Scholar 

  8. Barenblatt G, Zheltov I, Kochina I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 1960, 24: 1286–1303

    Article  MATH  Google Scholar 

  9. Ting T W. Certain non-steady flows of second-order fluids. Archive for Rational Mechanics and Analysis, 1963, 14: 1–26

    Article  MathSciNet  MATH  Google Scholar 

  10. Korpusov M O, Sveshnikov A G. Three-dimensional nonlinear evolution equations of pseudo-parabolic type in problems of mathematicial physics. Computational Mathematics and Mathematical Physics, 2003, 43: 1765–1797

    MathSciNet  Google Scholar 

  11. Colton D, Wimp J. Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures. Journal of Mathematical Analysis and Applications, 1979, 69: 411–418

    Article  MathSciNet  MATH  Google Scholar 

  12. Padrón V. Effect of aggregation on population recovery modeled by a forward-backward pseudo-parabolic equation. Transactions of the American Mathematical Society, 2004, 356: 2739–2756

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu R Z, Su J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. Journal of Functional Analysis, 2013, 264: 2732–2763

    Article  MathSciNet  MATH  Google Scholar 

  14. Di H F, Shang Y D. Blow up of solutions for a class of fourth order nonlinear pseudo-parabolic equation with a nonlocal source. Boundary Value Problems, 2015, 109: 1–9

    MathSciNet  MATH  Google Scholar 

  15. Di H F, Shang Y D, Peng X M. Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Applied Mathematics Letters, 2017, 64: 67–73

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen H, Tian S Y. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. Journal of Differential Equations, 2015, 258: 4424–4442

    Article  MathSciNet  MATH  Google Scholar 

  17. Al’shin A B, Korpusov M O, Siveshnikov A G. Blow up in Nonlinear Sobolev type Equations. De Gruyter Series in Nonlinear Aanlysis and Applications 15. Berlin: De Gruter, 2011

    Book  MATH  Google Scholar 

  18. Novick-Cohen A, Pego R L. Stable patterns in a viscous diffusion equation. Transactions of the American Mathematical Society, 1991, 324: 331–351

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin L Y, Li L, Fang S M. The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation. Computers and Mathematics with Applications, 2017, 73: 2221–2232

    Article  MathSciNet  MATH  Google Scholar 

  20. Au V V, Jafari H, Hammouch Z, Tuan N H. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29: 1709–1734

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu W J, Yu J Y, Li G. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems Series S, 2021, 14: 4337–4366

    Article  MathSciNet  MATH  Google Scholar 

  22. Tuan N H, Au V V, Tri V V, O’Regan D. On the well-posedness of a nonlinear pseudo-parabolic equation. Journal of Fixed Point Theory and Applications, 2020, 22: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  23. Tuan N H, Au V V, Xu R Z. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20: 583–621

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngoc T B, Zhou Y, O’Regan D, Tuan N H. On a terminal value problem for pseudoparabolic equations involving Riemann—Liouville fractional derivatives. Applied Mathematics Letters, 2020, 106: 106373

    Article  MathSciNet  MATH  Google Scholar 

  25. Li J, Yang Y Y, Jiang Y J, et al. High-order numerical method for solving a space distributed-order time-fractional diffusion equation. Acta Mathematica Scientia, 2021, 41B(3): 801–826

    Article  MathSciNet  MATH  Google Scholar 

  26. Phuong N D, Tuan N H, Baleanu D, Ngoc T B. On Cauchy problem for nonlinear fractional differential equation with random discrete data. Applied Mathematics and Computation, 2019, 362: 124458

    Article  MathSciNet  MATH  Google Scholar 

  27. Tuan N H, Zhou Y, Thach T N, Can N H. An approximate solution for a nonlinear biharmonic equation with discrete random data. Journal of Computational and Applied Mathematics, 2020, 371: 112711

    Article  MathSciNet  MATH  Google Scholar 

  28. Triet N A, Phuong N D, O’Regane D, Tuan N H. Approximate solution of the backward problem for Kirchhoff’s model of Parabolic type with discrete random noise. Computers and Mathematics with Applications, 2020, 80: 453–470

    Article  MathSciNet  MATH  Google Scholar 

  29. Can N H, Zhou Y, Tuan N H, Thach T N. Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data. Chaos, Solitons and Fractals, 2020, 136: 109847

    Article  MathSciNet  MATH  Google Scholar 

  30. Phuong N D, Tuan N H, Hammouch Z, Sakthivel R. On a pseudo-parabolic equations with a non-local term of the kirchhoff type with random gaussian white noise. Chaos Solitons and Fractals, 2021, 145: 110771

    Article  MathSciNet  MATH  Google Scholar 

  31. Balan R M, Quer-Sardanyons L, Song J. Holder continuity for the parabolic anderson model with space-time homogeneous gaussian noise. Acta Mathematica Scientia, 2019, 39B(3): 717–730

    Article  MATH  Google Scholar 

  32. Zulfiqar H, He Z Y, Yang M H, Duan J Q. Slow manifold and parameter estimation for a nonlocal fast-slow dynamical system with brownian motion. Acta Mathematica Scientia, 2021, 41B(4): 1057–1080

    Article  MathSciNet  MATH  Google Scholar 

  33. Khoa V A, Tuan N H, Van P T K, Au V V. An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. Journal of Computational and Applied Mathematics, 2021, 384: 113176

    Article  MathSciNet  MATH  Google Scholar 

  34. Bisci G M, Radulescu V D, Sarvadei R. Variational Methods for Nonlocal Gractional Problems. Cambridge University Press, 2016

  35. Cusimano N, Teso F D, Gerardo-Giorda L, Pagnini G. Discretizations of the spectral fractional laplacian on general domains with dirichlet, neumann, and robin boundary conditions. SIAM Journal on Numerical Analysis, 2017, 56: 1243–1272

    Article  MathSciNet  MATH  Google Scholar 

  36. Koba H, Matsuoka H. Generalized quasi-reversibility method for a backward heat equation with a fractional Laplacian. Analysis (Berlin), 2015, 35: 47–57

    MathSciNet  MATH  Google Scholar 

  37. Deng W H, Li B Y, Tian W Y, Zhang P W. Boundary problems for the fractional and tempered fractional operators. Siam Journal on Multiscale Modeling & Simulation, 2017, 16: 125–149

    Article  MathSciNet  MATH  Google Scholar 

  38. Lischke A, Pang G F, Gulian M, et al. What is the fractional Laplacian? A comparative review with new results. Journal of Computational Physics, 2020, 404: 109009

    Article  MathSciNet  MATH  Google Scholar 

  39. Zou G, Wang B. Stochastic burgers equation with fractional derivative driven by multiplicative noise. Computers and Mathematics with Applications, 2017, 74: 3195–3208

    Article  MathSciNet  MATH  Google Scholar 

  40. Tuan N H, Nane E, O’Regan D, Phuong N D. Approximation of mild solutions of a semilinear fractional differential equation with random noise. Proceedings of the American Mathematical Society, 2020, 148: 3339–3357

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafei Di.

Additional information

This research is supported by the Natural Science Foundation of China (11801108), the Natural Science Foundation of Guangdong Province (2021A1515010314), and the Science and Technology Planning Project of Guangzhou City (202201010111).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, H., Rong, W. The Regularized Solution Approximation of Forward/Backward Problems for a Fractional Pseudo-Parabolic Equation with Random Noise. Acta Math Sci 43, 324–348 (2023). https://doi.org/10.1007/s10473-023-0118-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0118-3

Key words

2010 MR Subject Classification

Navigation