Skip to main content
Log in

L2-convergence to nonlinear diffusion waves for Euler equations with time-dependent damping

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the asymptotic behavior of L weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping \( - \frac{m}{{{{(1 + t)}^\lambda }}}\). As \(\lambda \in (0,\tfrac{1}{7}]\), we prove that the L weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation (GPME) in \({L^2}(\mathbb{R})\). As \(\lambda \in (\tfrac{1}{7},1)\), we prove that the L weak-entropy solution converges to an expansion around the nonlinear diffusion wave in \({L^2}(\mathbb{R})\), which is the best asymptotic profile. The proof is based on intensive entropy analysis and an energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen G. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III. Acta Math Sci, 1986, 6(1): 75–120

    Article  MathSciNet  Google Scholar 

  2. Chen S, Li H, Li J, Mei M, Zhang K. Global and blow-up solutions for compressible Euler equations with time-dependent damping. J Differential Equations, 2020, 268: 5035–5077

    Article  MathSciNet  Google Scholar 

  3. Cui H -B, Yin H -Y, Zhang J -S, Zhu C -J. Convergence to nonlinear diffusion waves for solutions of Euler equations with time-depending damping. J Differential Equations, 2018, 264: 4564–4602

    Article  MathSciNet  Google Scholar 

  4. Ding X, Chen G, Luo P. Convergence of the fractional step Lax-Friedrichs and Godunov scheme for isentropic system of gas dynamics. Commun Math Phys, 1989, 121: 63–84

    Article  MathSciNet  Google Scholar 

  5. Diperna R. Convergence of viscosity method for isentropic gas dynamics. Commun Math Phys, 1983, 91: 1–30

    Article  MathSciNet  Google Scholar 

  6. Geng S, Huang F. L1-convergence rates to the Barenblatt solution for the damped compressible Euler equations. J Differential Equations, 2019, 266(12): 7890–7908

    Article  MathSciNet  Google Scholar 

  7. Geng S, Huang F, Wu X. L1-convergence to generalized Barenblatt solution for compressible Euler equations with time-dependent damping. SIAM J Math Anal, 2021, 53(5): 6048–6072

    Article  MathSciNet  Google Scholar 

  8. Geng S, Huang F, Jin G, Wu X. The time asymptotic expansion for the compressible Euler equations with time-dependent damping. https://doi.org/10.48550/arXiv.2202.13385

  9. Hsiao L, Liu T. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Commun Math Phys, 1992, 143: 599–605

    Article  MathSciNet  Google Scholar 

  10. Hsiao L, Liu T. Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chin Ann Math, 1993, 14B: 465–480

    MathSciNet  MATH  Google Scholar 

  11. Huang F, Marcati P, Pan R. Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch Ration Mech Anal, 2005, 176: 1–24

    Article  MathSciNet  Google Scholar 

  12. Huang F, Pan R. Convergence rate for compressible Euler equations with damping and vacuum. Arch Ration Mech Anal, 2003, 166: 359–376

    Article  MathSciNet  Google Scholar 

  13. Huang F, Pan R. Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum. J Differ Equ, 2006, 220: 207–233

    Article  MathSciNet  Google Scholar 

  14. Huang F, Pan R, Wang Z. L1 Convergence to the Barenblatt solution for compressible Euler equations with damping. Arch Ration Mech Anal, 2011, 200: 665–689

    Article  MathSciNet  Google Scholar 

  15. Huang F, Wang Z. Convergence of viscosity solutions for isothermal gas dynamics. SIAM J Math Anal, 2002, 34(3): 595–610

    Article  MathSciNet  Google Scholar 

  16. Li H -T, Li J -Y, Mei M, Zhang K -J. Convergence to nonlinear diffusion waves for solutions of p-system with time-dependent damping. J Math Anal Appl, 2017, 456: 849–871

    Article  MathSciNet  Google Scholar 

  17. Lions P L, Perthame B, Tadmor E. Kinetic formulation of the isentropic gas dynamics and p-systems. Commun Math Phys, 1994, 163: 169–172

    Article  MathSciNet  Google Scholar 

  18. Lions P L, Perthame B, Souganidis P. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun Pure Appl Math, 1996, 49: 599–638

    Article  MathSciNet  Google Scholar 

  19. Liu T. Compressible flow with damping and vacuum. Japan J Appl Math, 1996, 13: 25–32

    MathSciNet  MATH  Google Scholar 

  20. Liu T, Yang T. Compressible Euler equations with vacuum. J Differ Equ, 1997, 140: 223–237

    Article  MathSciNet  Google Scholar 

  21. Liu T, Yang T. Compressible flow with vacuum and physical singularity. Methods Appl Anal, 2000, 7: 495–509

    Article  MathSciNet  Google Scholar 

  22. Mei M. Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping. J Differential Equations, 2009, 247: 1275–1296

    Article  MathSciNet  Google Scholar 

  23. Mei M. Best asymptotic profile for hyperbolic p-system with damping. SIAM J Math Anal, 2010, 42: 1–23

    Article  MathSciNet  Google Scholar 

  24. Nishihara K. Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping. J Differ Equ, 1996, 131: 171–188

    Article  MathSciNet  Google Scholar 

  25. Nishihara K. Asymptotics toward the diffusion wave for a one-dimensional compressible flow through porous media. Proc Roy Soc Edinburgh Sect A, 2003, 133: 177–196

    Article  MathSciNet  Google Scholar 

  26. Nishihara K, Wang W, Yang T. Lp-convergence rate to nonlinear diffusion waves for p-system with damping. J Differ Equ, 2000, 161: 191–218

    Article  Google Scholar 

  27. Pan X H. Global existence of solutions to 1-d Euler equations with time-dependent damping. Nonlinear Anal, 2016, 132: 327–336

    Article  MathSciNet  Google Scholar 

  28. Pan X H. Blow up of solutions to 1-d Euler equations with time-dependent damping. J Math Anal Appl, 2016, 442: 435–445

    Article  MathSciNet  Google Scholar 

  29. Serre D, Xiao L. Asymptotic behavior of large weak entropy solutions of the damped p-system. J Pure Differ Equ, 1997, 10: 355–368

    MathSciNet  MATH  Google Scholar 

  30. Sugiyama Y. Singularity formation for the 1-D compressible Euler equations with variable damping coefficient. Nonlinear Anal, 2018, 170: 70–87

    Article  MathSciNet  Google Scholar 

  31. Sugiyama Y. Remark on the global existence for the 1D compressible Euler equation with time-dependent damping. (to appear)

  32. Wirth J. Solution representations for a wave equation with weak dissipation. Math Methods Appl Sci, 2004, 27: 101–124

    Article  MathSciNet  Google Scholar 

  33. Wirth J. Wave equations with time-dependent dissipation. I. Non-effective dissipation. J Differential Equations, 2006, 222: 487–514

    Article  Google Scholar 

  34. Wirth J. Wave equations with time-dependent dissipation. II. Effective dissipation. J Differential Equations, 2007, 232: 74–103

    Article  Google Scholar 

  35. Zhao H. Convergence to strong nonlinear diffusion waves for solutions of p-system with damping. J Differ Equ, 2001, 174: 200–236

    Article  MathSciNet  Google Scholar 

  36. Zheng Y. Global smooth solutions to the adiabatic gas dynamics system with dissipation terms. Chinese Ann Math, 1996, 17A: 155–162

    MathSciNet  MATH  Google Scholar 

  37. Zhu C J. Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping. Sci China Ser A, 2003, 46: 562–575

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wu.

Additional information

Dedicated to Professor Banghe LI on the Occasion of his 80th birthday

S. Geng’s research was supported in part by the National Natural Science Foundation of China (12071397) and Excellent Youth Project of Hunan Education Department (21B0165). F. Huang’s research was supported in part by the National Key R&D Program of China 2021YFA1000800 and the National Natural Science Foundation of China (12288201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Huang, F. & Wu, X. L2-convergence to nonlinear diffusion waves for Euler equations with time-dependent damping. Acta Math Sci 42, 2505–2522 (2022). https://doi.org/10.1007/s10473-022-0618-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0618-6

Key words

2010 MR Subject Classification

Navigation