Skip to main content
Log in

Symbolic computation for the qualitative theory of differential equations

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper provides a survey on symbolic computational approaches for the analysis of qualitative behaviors of systems of ordinary differential equations, focusing on symbolic and algebraic analysis for the local stability and bifurcation of limit cycles in the neighborhoods of equilibria and periodic orbits of the systems, with a highlight on applications to computational biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poincaré H. Mémoire sur les courbes définies par une équation différentielle (I), (II). Journal de Mathématiques Pures et Appliquées, 1881, 7: 375–422; 1882, 8: 251-296; 1885, 1: 167-244

    MATH  Google Scholar 

  2. Liapunov A. The General Problem of the Stability of Motion. Kharkov: Kharkov Mathematical Society, 1892

    Google Scholar 

  3. Nemitskij V, Stepanov V. Qualitative Theory of Differential Equations. Princeton: Princeton University Press, 1960

    Google Scholar 

  4. Zhang Z, Ding T, Huang W, Dong Z. Qualitative Theory of Differential Equations. Providence, RI: American Mathematical Society, 1992

    Google Scholar 

  5. Qin Y, Zhang J, Qin C. Computer deduction of stability criteria for a class of nonlinear systems. J Qufu Normal University, 1985, 2: 1–11 (in Chinese)

    MATH  Google Scholar 

  6. Wang D. Mechanical manipulation for a class of differential systems. J Symbolic Comput, 1991, 12: 233–254

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu W-T. Basic principles of mechanical theorem proving in elementary geometries. J Sys Sci & Math Sci, 1984, 4: 207–235; J Automat Reasoning, 1986, 2: 221-252

    MathSciNet  Google Scholar 

  8. Buchberger B. Gröbner bases: An algorithmic method in polynomial ideal theory//Bose N K, Ed. Multidimensional Systems Theory. Reidel: Dordrecht, 1985: 184–232

  9. Jin X, Wang D. On the conditions of Kukles for the existence of a centre. Bull London Math Soc, 1990, 22: 1–4

    Article  MathSciNet  MATH  Google Scholar 

  10. Christopher C, Lloyd N. On the paper of Jin and Wang concerning the conditions for a center in certain cubic systems. Bull London Math Soc, 1990, 22: 5–12

    Article  MathSciNet  MATH  Google Scholar 

  11. Lloyd N, Pearson J. Computing centre conditions for certain cubic systems. J Comput Appl Math, 1992, 40: 323–336

    Article  MathSciNet  MATH  Google Scholar 

  12. Christopher C. Invariant algebraic curves and conditions for a centre. Proc R Soc Edinb Sect A, 1994, 124: 1209–1229

    Article  MathSciNet  MATH  Google Scholar 

  13. Ye W, Ye Y. Qualitative theory of the Kukles systems: (I) number of critical points. Ann Differ Equations, 2001, 17: 275–286

    MathSciNet  MATH  Google Scholar 

  14. Pearson J, Lloyd N. Kukles revisited: Advances in computing techniques. Comput Math Appl, 2010, 60: 2797–2805

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong H, Liska R, Steinberg S. Testing stability by quantifier elimination. J Symbolic Comput, 1997, 24: 161–187

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang D, Xia B. Stability analysis of biological systems with real solution classification//Gao X-S, Labahn G, Ed. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 2005: 354–361

    Chapter  Google Scholar 

  17. Hong H, Tang X, Xia B. Special algorithm for stability analysis of multistable biological regulatory systems. J Symbolic Comput, 2015, 70: 112–135

    Article  MathSciNet  MATH  Google Scholar 

  18. Pearson J, Lloyd N, Christopher C. Algorithmic derivation of centre conditions. SIAM Rev, 1996, 38: 619–636

    Article  MathSciNet  MATH  Google Scholar 

  19. Romanovski V, Shafer D. The Center and Cyclicity Problems: A Computational Algebra Approach. Boston, MA: Birkhäuser Boston Inc, 2009

    MATH  Google Scholar 

  20. Romanovski V. Computational algebra and limit cycles bifurcations in polynomial systems. Nonlinear Phenom Complex Syst, 2007, 10: 79–85

    MathSciNet  Google Scholar 

  21. Chen C, Corless R, Moreno Maza M, Yu P, Zhang Y. An application of regular chain theory to the study of limit cycles. Int J Bifurcation Chaos, 2013, 23: 1350154–1–23

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun X, Huang W. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. J Symbolic Comput, 2017, 79: 197–210

    Article  MathSciNet  MATH  Google Scholar 

  23. Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem null-dimensionalen Polynomideal [D]. Austria: Universität Innsbruck, 1965

    MATH  Google Scholar 

  24. Faugère J-C, Gianni P, Lazard D, et al. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J Symbolic Comput, 1993, 16: 329–344

    Article  MathSciNet  MATH  Google Scholar 

  25. Faugère J-C, Mou C. Sparse FGLM algorithms. J Symbolic Comput, 2017, 80: 538–569

    Article  MathSciNet  MATH  Google Scholar 

  26. Faugère J-C. A new efficient algorithm for computing Gröbner bases (F4). J Pure Appl Algebra, 1999, 139: 61–88, 1999

    Article  MathSciNet  MATH  Google Scholar 

  27. Faugère J-C. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)//Giusti M, Ed. Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 2002: 75–83

    Chapter  Google Scholar 

  28. Wu W-T. Mathematics Mechanization. Beijing: Science Press/Kluwer Academic, 2000

    Google Scholar 

  29. Ritt J. Differential Algebra. New York: American Mathematical Society, 1950

    Book  MATH  Google Scholar 

  30. Aubry P, Lazard D, Moreno Maza M. On the theories of triangular sets. J Symbolic Comput, 1999, 28: 105–124

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang D. Elimination Methods. New York: Springer-Verlag, 2001

    Book  MATH  Google Scholar 

  32. Cox D, Little J, O'Shea D. Using Algebraic Geometry. New York: Springer, 2005

    MATH  Google Scholar 

  33. Collins G. Quantifier elimination for real closed fields by cylindrical algebraic decomposition}/Barkhage H, Ed. Proceedings of the Second GI Conference on Adtomata Theory and Formal Languages. Berlin Heidelberg: Springer, 1975: 134–183

    Google Scholar 

  34. Collins G, Hong H. Partial cylindrical algebraic decomposition for quantifier elimination. J Symbolic Comput, 1991, 12: 299–328

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang L, Hou X, Xia B. A complete algorithm for automated discovering of a class of inequality-type theorems. Sci China Ser F, 2001, 44: 33–49

    MathSciNet  MATH  Google Scholar 

  36. Yang L, Xia B. Real solution classifications of parametric semi-algebraic systems//Dolzmann A, Seidl A, Sturm T, Ed. Algorithmic Algebra and Logic - Proceedings of the A3L 2005. Norderstedt: Herstellung und Verlag, 2005: 281–289

    Google Scholar 

  37. Lazard D, Rouillier F. Solving parametric polynomial systems. J Symbolic Comput, 2007, 42: 636–667

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang D. Computational polynomial algebra and its biological applications//Anai H, Horimoto K, Ed. Proceedings of the First International Conference on Algebraic Biology (AB 2005). Tokyo: Universal Academy Press, Inc, 2005: 127–137

    Google Scholar 

  39. Miller R, Michel A. Ordinary Differential Equations. New York: Academic Press, 1982

    MATH  Google Scholar 

  40. Liénard A, Chipart M. Sur le signe de la partie réelle des racines d'une équation algébrique. J Math Pure Appl, 1914, 10: 291–346

    MATH  Google Scholar 

  41. Niu W, Wang D. Algebraic approaches to stability analysis of biological systems. Math Comput Sci, 2008, 1: 507–539

    Article  MathSciNet  MATH  Google Scholar 

  42. Jirstrand M. Nonlinear control system design by quantifier elimination. J Symbolic Comput, 1997, 24: 137–152

    Article  MathSciNet  MATH  Google Scholar 

  43. She Z, Xia B, Xiao R, et al. A semi-algebraic approach for asymptotic stability analysis. Nonlinear Anal, 2009, 3: 588–596

    MathSciNet  MATH  Google Scholar 

  44. She Z, Li H, Xue B, et al. Discovering polynomial Lyapunov functions for continuous dynamical systems. J Symbolic Comput, 2013, 58: 41–63

    Article  MathSciNet  MATH  Google Scholar 

  45. Niu W, Wang D. Algebraic analysis of stability and bifurcation of a self-assembling micelle system. Appl Math Comput, 2012, 219: 108–121

    MathSciNet  MATH  Google Scholar 

  46. Khibnik A. LINLBF: A program for continuation and bifurcation analysis of equilibria up to codimension three//Roose D, Ed. Continuation and Bifurcation: Numerical Techniques and Applications. Norwell, MA: Kluwer Academic Publishers, 1990: 283–296

    Chapter  Google Scholar 

  47. Guckenheimer J, Myers M, Sturmfels B. Computing Hopf bifurcation I. SIAM J Numer Anal, 1997, 34: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  48. Guckenheimer J, Myers M. Computing Hopf bifurcations. II: Three examples from neurophysiology. SIAM J Sci Comput, 1996, 17: 1–27

    MATH  Google Scholar 

  49. Moore G, Garrett T, Spence A. The numerical detection of Hopf bifurcation points//Roose D, Ed. Continuation and Bifurcation: Numerical Techniques and Applications. Norwell, MA: Kluwer Academic Publishers, 1990: 227–246

    Chapter  Google Scholar 

  50. Roose D. An algorithm for the computation of Hopf bifurcation points in comparison with other methods. J Comput Appl Math, 1985, 12: 517–529

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu W. Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl, 1994, 182: 250–256

    Article  MathSciNet  MATH  Google Scholar 

  52. El Kahoui M, Weber A. Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J Symbolic Comput, 2000, 30: 161–179

    Article  MathSciNet  MATH  Google Scholar 

  53. Shahruz S, Kalkin D. Limit cycle behavior in three or higher dimensional nonlinear systems: The Lotka-Volterra example//Dieulot J, Richard J, Ed. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2001: 379–386

    MATH  Google Scholar 

  54. Kuznetsov Y. Elements of Applied Bifurcation Theory. New York: Springer-Verlag, 2004

    Book  MATH  Google Scholar 

  55. Chow S-N, Hale J. Methods of Bifurcation Theory. New York: Springer, 1982

    Book  MATH  Google Scholar 

  56. Govaerts W, Guckenheimer J, Khibnik A. Defining functions for multiple Hopf bifurcations. SIAM J Numer Anal, 1997, 34: 1269–1288

    Article  MathSciNet  MATH  Google Scholar 

  57. Liapunov A. Probléme Général de la Stabilité du Mouvement. New Jersey: Princeton University Press, 1947

    Google Scholar 

  58. Giné J, Santallusia X. Implementation of a new algorithm of computation of the Poincaré-Liapunov constants. J Comput Appl Math, 2004, 166: 465–476

    Article  MathSciNet  MATH  Google Scholar 

  59. Lynch S. Symbolic computation of Lyapunov quantities and the second part of Hilbert's sixteenth problem//Wang D, Zheng Z, Ed. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005: 1–22

    MATH  Google Scholar 

  60. Yu P, Chen G. Computation of focus values with applications. Nonlinear Dyn, 2008, 51: 409–427

    Article  MathSciNet  MATH  Google Scholar 

  61. Shi S. A method of constructing cycles without contact around a weak focus. J Differential Equations, 1981, 41: 301–312

    Article  MathSciNet  MATH  Google Scholar 

  62. Giné J. On some open problems in planar differential systems and Hilbert's 16th problem. Chaos Solitons & Fractals, 2007, 31: 1118–1134

    Article  MathSciNet  MATH  Google Scholar 

  63. Żoladek H. On certain generalization of the Bautin's theorem. Nonlinearity, 1994, 7: 273–279

    Article  MathSciNet  MATH  Google Scholar 

  64. Żoladek H. The classification of reversible cubic systems with center. Topol Methods Nonlinear Anal, 1994, 4: 79–136

    Article  MathSciNet  MATH  Google Scholar 

  65. Dulac H. Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un center. Bull Sci Math, 1908, 32: 230–252

    MATH  Google Scholar 

  66. Bautin N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat Sb, 1952, 30: 181–196 (in Russian); Amer Math Soc Transl, 1954, 100: 397-413

    MATH  Google Scholar 

  67. Sibirskii K. On the number of limit cycles in the neighbourhood of a singular point. Differential Equations, 1965, 1: 36–47

    Google Scholar 

  68. Kukles I. Sur quelques cas de distinction entre un foyer et un centre. Dokl Akad Nauk SSSR, 1944, 42: 208–211

    MathSciNet  MATH  Google Scholar 

  69. Cherkas L. Conditions for the equation \(yy' = \sum\limits_{i = 0} 3 {{p_i}(x){y i}} \) to have a center. Differentsial'nye Uravneniya, 1978, 14: 1594–1600

    Google Scholar 

  70. Wang D. Polynomial systems from certain differential equations. J Symbolic Comput, 1999, 28: 303–315

    Article  MathSciNet  MATH  Google Scholar 

  71. Sadovskii A. Solutions of the center and focus problem for a cubic system of nonlinear oscillations. Differential Equations, 1997, 33: 236–244

    MathSciNet  Google Scholar 

  72. Wang D. An elimination method for polynomial systems. J Symbolic Comput, 1993, 16: 83–114

    Article  MathSciNet  MATH  Google Scholar 

  73. Lu Z, Ma S. Centers, foci, and limit cycles for polynomial differential systems//Gao X-S, Wang D, Ed. Mathematics Mechanization and Applications. London: Academic Press, 2000: 365–387

    Google Scholar 

  74. Giné J. Center conditions for generalized polynomial Kukles systems. Commun Pur Appl Anal, 2017, 16: 417–425

    Article  MathSciNet  MATH  Google Scholar 

  75. Chavarriga J, Giné J. Integrability of a linear center perturbed by fourth degree homogeneous polynomial. Publ Mat, 1996, 40: 21–39

    Article  MathSciNet  MATH  Google Scholar 

  76. Chavarriga J, Giné J. Integrability of a linear center perturbed by fifth degree homogeneous polynomial. Publ Mat, 1997, 41: 335–356

    Article  MathSciNet  MATH  Google Scholar 

  77. Giné J, Llibre J, Valls C. Centers for the Kukles homogeneous systems with odd degree. Bull London Math Soc, 2015, 47: 315–324

    Article  MathSciNet  MATH  Google Scholar 

  78. Giné J, Llibre J, Valls C. Centers for the Kukles homogeneous systems with even degree. J Appl Anal Comput, 2017, 7: 1534–1548

    MathSciNet  MATH  Google Scholar 

  79. Schlomiuk D. Algebraic particular integrals, integrability and the problem of center. Trans Am Math Soc, 1993, 338: 799–841

    Article  MathSciNet  MATH  Google Scholar 

  80. Edneral V, Mahdi A, Romanovski V, et al. The center problem on a center manifold in R3. Nonlinear Anal, 2012, 75: 2614–2622

    Article  MathSciNet  MATH  Google Scholar 

  81. Mahdi A. The center problem for the third-order ODEs. Internat J Bifur Chaos, 2013, 23: 1350078–1–11

    Article  MathSciNet  MATH  Google Scholar 

  82. Mahdi A, Pessoa C, Hauenstein J. A hybrid symbolic-numerical approach to the center-focus problem. J Symbolic Comput, 2017, 82: 57–73

    Article  MathSciNet  MATH  Google Scholar 

  83. Romanovski V, Xia Y, Zhang X. Varieties of local integrability of analytic differential systems and their applications. J. Differential Equations, 2014, 257: 3079–3101

    Article  MathSciNet  MATH  Google Scholar 

  84. Conti R. Centers of planar polynomial systems. A review. Le Matematiche, 1998, 53: 207–240

    MathSciNet  MATH  Google Scholar 

  85. Chavarriga J, Sabatini M. A survey of isochronous centers. Qual Theory Dyn Syst, 1999, 1: 1–70

    Article  MathSciNet  Google Scholar 

  86. Hilbert D. Mathematical problems. Bull Amer Math Soc, 1902, 8: 437–479

    Article  MathSciNet  MATH  Google Scholar 

  87. Dulac H. Sur les cycles limites. Bull Soc Math France, 1923, 51: 45–188

    Article  MathSciNet  MATH  Google Scholar 

  88. Otrokov N. On the number of limit cycles of a differential equation in the neighborhood of a singular point. Mat Sbornik, 1954, 34: 127–144

    MathSciNet  MATH  Google Scholar 

  89. Écalle J. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualiti ées Math. Paris: Hermann, 1992

    MATH  Google Scholar 

  90. Ilyashenko Yu. Finiteness theorems for limit cycles. Uspekhi Mat Nauk, 1990, 2: 143–200 (Russian); English transl Russian Math Surveys 1990, 45: 129-203

    MathSciNet  Google Scholar 

  91. Christopher C. Estimating limit cycle bifurcations from centers//Wang D, Zheng Z, Ed. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005: 23–35

    Chapter  Google Scholar 

  92. Chen L, Wang M. The relative position, and the number, of limit cycles of a quadratic differential system. Acta Math Sinica, 1979, 22: 751–758

    MathSciNet  MATH  Google Scholar 

  93. Li C, Liu C, Yang J. A cubic system with thirteen limit cycles. J Differential Equations, 2009, 246: 3609–3619

    Article  MathSciNet  MATH  Google Scholar 

  94. Bamon R. The solution of Dulac's problem for quadratic vector fields. Ann Acad Bros Cienc, 1985, 57: 111–142

    MathSciNet  MATH  Google Scholar 

  95. Christopher C, Lloyd N. Polynomial systems: A lower bound for the Hilbert numbers. Proc Royal Soc London Ser A, 1995, 450: 219–224

    MathSciNet  MATH  Google Scholar 

  96. Han M, Li J. Lower bounds for the Hilbert number of polynomial systems. J Differential Equations, 2012, 252: 3278–3304

    Article  MathSciNet  MATH  Google Scholar 

  97. Han M, Shang D, Wang Z, et al. Bifurcation of limit cycles in a 4th-order near-Hamiltonian polynomial systems. Internat J Bifur Chaos, 2007, 11: 4117–4144

    Article  MATH  Google Scholar 

  98. Sun X, Han M. On the number of limit cycles of a Z4-equivariant quintic near-Hamiltonian system. Acta Math Sin, Engl Ser, 2015, 31: 1805–1824

    Article  MathSciNet  MATH  Google Scholar 

  99. Wu Y, Wang X, Tian L. Bifurcations of limit cycles in a Z4-equivariant quintic planar vector field. Acta Math Sin, Engl Ser, 2010, 26: 779–798

    Article  MathSciNet  MATH  Google Scholar 

  100. Wang S, Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos Solitons & Fractals, 2005, 26: 1317–1335

    Article  MathSciNet  MATH  Google Scholar 

  101. Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Internat J Bifur Chaos, 2003, 13: 47–106

    Article  MathSciNet  MATH  Google Scholar 

  102. Wang D. A class of cubic differential systems with 6-tuple focus. J Differential Equations, 1990, 87: 305–315

    Article  MathSciNet  MATH  Google Scholar 

  103. Li J, Bai J. The cyclicity of multiple Hopf bifurcation in planar cubic differential systems: M(3) ≥7. Science Bulletin, 1990, 23: 2016–2017

    Google Scholar 

  104. James E, Lloyd N. A cubic system with eight small-amplitude limit cycles. IMA J Appl Math, 1991, 47: 163–171

    Article  MathSciNet  MATH  Google Scholar 

  105. Ning S, Ma S, Kwek K, et al. A cubic system with eight small-amplitude limit cycles. Appl Math Lett, 1994, 7: 23–27

    Article  MathSciNet  MATH  Google Scholar 

  106. Yu P, Corless R. Symbolic computation of limit cycles associated with Hilbert's 16th problem. Commun Nonlinear Sci Numer Simul, 2009, 14: 4041–4056

    Article  MathSciNet  MATH  Google Scholar 

  107. Zhang W, Hou X, Zeng Z. Weak centers and bifurcation of critical periods in reversible cubic systems. Comput Math Appl, 2000, 40: 771–782

    Article  MathSciNet  MATH  Google Scholar 

  108. Lu Z, Luo Y. Two limit cycles in three-dimensional Lotka-Volterra systems. Comput Math Appl, 2002, 44: 51–66

    Article  MathSciNet  MATH  Google Scholar 

  109. Wang D, Zheng Z. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005

    Book  MATH  Google Scholar 

  110. Chen C, Moreno Maza M. Semi-algebraic description of the equilibria of dynamical systems//Gerdt V, Koepf W, Mayr E, et al, Ed. Computer Algebra in Scientific Computing. Heidelberg: Springer, 2011: 101–125

    Chapter  Google Scholar 

  111. Lloyd N, Pearson J. A cubic differential system with nine limit cycles. J Appl Anal Comput, 2012, 2: 293–304

    MathSciNet  MATH  Google Scholar 

  112. Yu P, Tian Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun Nonlinear Sci Numer Simul, 2014, 19: 2690–2705

    Article  MathSciNet  MATH  Google Scholar 

  113. Levandovskyy V, Romanovski V, Shafer D. The cyclicity of a cubic system with nonradical Bautin ideal. J Differential Equations, 2009, 246: 1274–1287

    Article  MathSciNet  MATH  Google Scholar 

  114. Han M, Romanovski V. Estimating the number of limit cycles in polynomial systems. J Math Anal Appl, 2010, 368: 491–497

    Article  MathSciNet  MATH  Google Scholar 

  115. Han M, Yu P. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. New York: Springer, 2012

    Book  MATH  Google Scholar 

  116. Han M, Yang J, Yu P. Hopf bifurcations for near-Hamiltonian systems. Int J Bifurcation Chaos, 2009, 19: 4117–4130

    Article  MathSciNet  MATH  Google Scholar 

  117. Llibre J, Zhang X. Hopf bifurcation in higher dimensional differential systems via the averaging method. Pacific J Math, 2009, 240: 321–341

    Article  MathSciNet  MATH  Google Scholar 

  118. Llibre J, Valls C. Hopf bifurcation for some analytic differential systems in R3 via averaging theory. Discrete Contin Dyn Syst, 2011, 30: 779–790

    Article  MathSciNet  MATH  Google Scholar 

  119. Huang B, Yap C. An algorithmic approach to small limit cycles of nonlinear differential systems: The averaging method revisited. J Symbolic Comput, 2021. DOI: https://doi.org/10.1016/j.jsc.2020.09.001

    Google Scholar 

  120. Yu P. Computation of normal forms via a perturbation technique. J Sound Vib, 1998, 211: 19–38

    Article  MathSciNet  MATH  Google Scholar 

  121. Bi Q, Yu P. Symbolic computation of normal forms for semi-simple cases. J Comput Appl Math, 1999, 102: 195–220

    Article  MathSciNet  MATH  Google Scholar 

  122. Zeng B, Yu P. Analysis of zero-Hopf bifurcation in two Rössler systems using normal form theory. Internat J Bifur Chaos, 2020, 30: 2030050–1–14

    Article  MathSciNet  MATH  Google Scholar 

  123. Tian Y, Yu P. An explicit recursive formula for computing the normal forms associated with semi-simple cases. Commun Nonlinear Sci Numer Simul, 2014, 19: 2294–2308

    Article  MathSciNet  MATH  Google Scholar 

  124. Llibre J, Makhlouf A, Badi S. 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete Contin Dyn Syst, 2009, 25: 1287–1295

    Article  MathSciNet  MATH  Google Scholar 

  125. Chow S-N, Mallet-Paret J. Hopf bifurcation and the method of averaging//Marsden J, McCracken M, Ed. The Hopf Bifurcation and Its Applications. New York: Springer-Verlag, 1976: 151–162

    Chapter  Google Scholar 

  126. Llibre J, Novaes D, Teixeira M. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27: 563–583

    Article  MathSciNet  MATH  Google Scholar 

  127. Huang B, Wang D. Zero-Hopf bifurcation of limit cycles in certain differential systems. 2022, https://arxiv.org/abs/2205.14450

    Google Scholar 

  128. Sanders J, Verhulst F, Murdock J. Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences. New York: Springer, 2007

    Google Scholar 

  129. Llibre J, Moeckel R, Simó C. Central Configuration, Periodic Oribits, and Hamiltonian Systems. Advanced Courses in Mathematics-CRM Barcelona, Basel: Birkhäuser, 2015

    Google Scholar 

  130. Pi D, Zhang X. Limit cycles of differential systems via the averaging method. Canad Appl Math Quart, 2009, 7: 243–269

    MathSciNet  MATH  Google Scholar 

  131. Barreira L, Llibre J, Valls C. Limit cycles bifurcating from a zero-Hopf singularity in arbitrary dimension. Nonlinear Dynam, 2018, 92: 1159–1166

    Article  MATH  Google Scholar 

  132. Blows T, Perko L. Bifurcation of limit cycles from centers and separatrix cycles of planar analytic systems, SIAM Rev, 1994, 36: 341–376

    Article  MathSciNet  MATH  Google Scholar 

  133. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer, 1993

    MATH  Google Scholar 

  134. Viano M, Llibre J, Giacomini H. Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor. Nonlinear Anal, 2002, 48: 117–136

    Article  MathSciNet  MATH  Google Scholar 

  135. Han M, Romanovski V, Zhang X. Equivalence of the Melnikov function method and the averaging method. Qual Theory Dyn Syst, 2016, 15: 471–479

    Article  MathSciNet  MATH  Google Scholar 

  136. Arnold I. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct Anal Appl, 1977, 11: 85–92

    Article  MATH  Google Scholar 

  137. Christopher C, Li C. Limit Cycles of Differential Equuations. Advanced Courses in Mathematics, CRM Barcelona, Basel: Birkhäuser, 2007

    Google Scholar 

  138. Cveticanin L. Strong Nonlinear Oscillators. Cham: Springer, 2018

    Book  MATH  Google Scholar 

  139. Dumortier F, Li C. Perturbations from an elliptic Hamiltonian of degree four: (I) saddle loop and two saddle cycle. J Differential Equations, 2001, 176: 114–157; (II) cuspidal loop. J Differential Equations, 2001, 175: 209-243; (III) global center. J Differential Equations, 2003, 188: 473-511; (IV) figure eightloop. J Differential Equations, 2003, 88: 512-514

    Article  MathSciNet  MATH  Google Scholar 

  140. Asheghi R, Zangeneh H. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-gure loop. Nonlinear Anal, 2008, 68: 2957–2976

    Article  MathSciNet  MATH  Google Scholar 

  141. Asheghi R, Zangeneh H. Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop. Comput Math Appl, 2010, 59: 1409–1418

    Article  MathSciNet  MATH  Google Scholar 

  142. Zhao L. The perturbations of a class of hyper-elliptic Hamilton systems with a double homoclinic loop through a nilpotent saddle. Nonlinear Anal, 2014, 95: 374–387

    Article  MathSciNet  MATH  Google Scholar 

  143. Grau M, Mañosas F, Villadelprat J. A Chebyshev criterion for Abelian integrals. Transl Am Math Soc, 2011, 363: 109–129

    Article  MathSciNet  MATH  Google Scholar 

  144. Mañosas F, Villadelprat J. Bounding the number of zeros of certain Abelian integrals. J Differential Equations, 2011, 251: 1656–1669

    Article  MathSciNet  MATH  Google Scholar 

  145. Wang J, Xiao D. On the number of limit cycles in samll perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle. J Differential Equations, 2011, 250: 2227–2243

    Article  MathSciNet  MATH  Google Scholar 

  146. Atabaigi A, Zangeneh H. Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp. J Appl Anal Comput, 2011, 1: 299–313

    MathSciNet  MATH  Google Scholar 

  147. Wang J. Bound the number of limit cycles bifurcating from center of polynomial Hamiltonian system via interval analysis. Chaos Solitons & Fractals, 2016, 87: 30–38

    Article  MathSciNet  MATH  Google Scholar 

  148. Hu Y, Niu W, Huang B. Bounding the number of limit cycles for parametric Liénard systems using symbolic computation methods. Commun Nonlinear Sci Numer Simul, 2021, 96: 105716–1–16

    Article  MATH  Google Scholar 

  149. Sun X, Xi H, Zangeneh R, Kazemi R. Bifurcation of limit cycles in small perturbation of a class of Liénard systems. Internat J Bifur Chaos, 2014, 24: 1450004–1–23

    Article  MathSciNet  MATH  Google Scholar 

  150. Kazemi R, Zangeneh H. Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles. J Appl Anal Comput, 2012, 2: 395–413

    MathSciNet  MATH  Google Scholar 

  151. Sun X, Zhao L. Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points. Appl Math Comput, 2016, 289: 194–203

    MathSciNet  MATH  Google Scholar 

  152. Sun X, Yu P. Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4. J Differential Equations, 2019, 267: 7369–7384

    Article  MathSciNet  MATH  Google Scholar 

  153. Smith J. Mathematical Ideas in Biology. London: Cambridge University Press, 1968

    Book  Google Scholar 

  154. Smith J. Evolution and the Theory of Games. London: Cambridge University Press, 1982

    Book  MATH  Google Scholar 

  155. May R. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459–467

    Article  MATH  Google Scholar 

  156. Niu W. Qualitative Analysis of Biological Systems Using Algebraic Methods [D]. Paris: Université Paris VI, 2011

    Google Scholar 

  157. Niu W, Wang D. Algebraic analysis of bifurcation and limit cycles for biological systems//Horimoto K, Regensburger G, Rosenkranz M, et al, Ed. Proceedings of the Third International Conference on Algebraic Biology. Heidelberg: Springer-Verlag, 2008: 156–171

    Google Scholar 

  158. Errami H, Eiswirth M, Grigoriev D, et al. Efficient methods to compute Hopf bifurcations in chemical reaction networks using reaction coordinates//Gerdt V, Koepf W, Mayr E, et al, Ed. Computer Algebra in Scientific Computing. Heidelberg: Springer-Verlag, 2013: 88–99

    Chapter  MATH  Google Scholar 

  159. Bradford R, Davenport J, England M, et al. Identifying the parametric occurrence of multiple steady states for some biological networks. J Symbolic Comput, 2020, 98: 84–119

    Article  MathSciNet  MATH  Google Scholar 

  160. Dickenstein A, Millán M, Shiu A, et al. Multistationarity in structured reaction networks. B Math Biol, 2019, 81: 1527–1581

    Article  MathSciNet  MATH  Google Scholar 

  161. Mou C, Ju W. Sparse triangular decomposition for computing equilibria of biological dynamic systems based on chordal graphs. IEEE/ACM Trans Comput Biol Bioinform, 2022. DOI: https://doi.org/10.1109/TCBB.2022.3156759

    Google Scholar 

  162. Gatermann K, Huber B. A family of sparse polynomial systems arising in chemical reaction systems. J Symbolic Comput, 2022, 33: 275–305

    Article  MathSciNet  MATH  Google Scholar 

  163. Gatermann K. Counting stable solutions of sparse polynomial systems in chemistry//Green E, Hosten S, Laubenbacher R, et al, Ed. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering. Providence, RI: American Mathematical Society, 2001: 53–70

    Chapter  MATH  Google Scholar 

  164. Gatermann K, Eiswirth M, Sensse A. Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J Symbolic Comput, 2005, 40: 1361–1382

    Article  MathSciNet  MATH  Google Scholar 

  165. Ferrell J, Machleder E. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 1998, 280: 895–898

    Article  Google Scholar 

  166. Angeli D, Ferrell J, Sontag E. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Nat Acad Sci, 2004, 101: 1822–1827

    Article  Google Scholar 

  167. Liu L, Lu Z, Wang D. The structure of LaSalle's invariant set for Lotka-Volterra systems. Sci China (Ser A), 1991, 34: 783–790

    MathSciNet  MATH  Google Scholar 

  168. Lu Z. Computer aided proof for the global stability of Lotka-Volterra systems. Comput Math Appl, 1996, 31: 49–59

    Article  MathSciNet  MATH  Google Scholar 

  169. Li B, Shen Y, Li B. Quasi-Steady-State laws in enzyme kinetics. J Phys Chem A, 2008, 112: 2311–2321

    Article  Google Scholar 

  170. Li B, Li B. Quasi-Steady-State laws in reversible model of enzyme kinetics. J Math Chem, 2013, 51: 2668–2686

    Article  MathSciNet  MATH  Google Scholar 

  171. Boulier F, Lemaire F, Sedoglavic A, et al. Towards an automated reduction method for polynomial ODE models in cellular biology. Math Comput Sci, 2009, 2: 443–464

    Article  MathSciNet  MATH  Google Scholar 

  172. Boulier F, Lazard D, Ollivier F, et al. Representation for the radical of a finitely generated differential ideal//Levelt A, Ed. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 1995: 158–166

    MATH  Google Scholar 

  173. Boulier F, Lefranc M, Lemaire F, et al. Model reduction of chemical reaction systems using elimination. Math Comput Sci, 2011, 5: 289–301

    Article  MathSciNet  MATH  Google Scholar 

  174. Boulier F, Lefranc M, Lemaire F, et al. Applying a rigorous Quasi-Steady State Approximation method for proving the absence of oscillations in models of genetic circuits//Horimoto K, Regensburger G, Ed. Proceedings of the Third International Conference on Algebraic Biology. Heidelberg: Springer-Verlag, 2008: 56–64

    MATH  Google Scholar 

  175. Wang D. Algebraic stability criteria and symbolic derivation of stability conditions for feedback control systems. Int J of Control, 2012, 85: 1414–1421

    Article  MathSciNet  MATH  Google Scholar 

  176. Li X, Wang D. Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification. J Math Econ, 2014, 54: 48–58

    Article  MathSciNet  MATH  Google Scholar 

  177. Huang B, Niu W. Analysis of snapback repellers using methods of symbolic computation. Int J Bifurcation Chaos, 2019, 29: 1950054–1–13

    Article  MathSciNet  MATH  Google Scholar 

  178. Quadrat A, Zerz E. Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in Delays and Dynamics. Cham: Springer, 2020

    MATH  Google Scholar 

Download references

Acknowledgments

The first author wishes to thank Xianbo Sun for providing him with helpful references on recent developments regarding Liénard systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Niu.

Additional information

Dedicated to Professor Banghe LI on the Occasion of his 80th birthday

The work was partially supported by the National Natural Science Foundation of China (12101032, 12131004 and 11601023), Ministry of Science and Technology of China (2021YFA1003600), and Beijing Natural Science Foundation (1212005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Niu, W. & Wang, D. Symbolic computation for the qualitative theory of differential equations. Acta Math Sci 42, 2478–2504 (2022). https://doi.org/10.1007/s10473-022-0617-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0617-7

Key words

2010 MR Subject Classification

Navigation