Akgun F A, Rhoades B E, Upper bounds for E-J matrices. Appl Math Inf Sci, 2012, 3: 1125–1128
MathSciNet
Google Scholar
Başar F. Summability Theory and Its Applications. Istanbul: Bentham Science Publishers, 2012
Book
Google Scholar
Başar F, Sever Y, The space \(\cal{L}_{p}\) of double sequences. Math J Okayama Univ, 2009, 51: 149–157
MathSciNet
MATH
Google Scholar
Bennett G, Factorizing the classical inequalities. Mem Amer Math Soc, 1996, 120(576): 1–130
MathSciNet
MATH
Google Scholar
Chen C P, Wang K Z, Operator norms and lower bounds of generalized Hausdor matrices. Linear Multilinear Algebra, 2011, 59(3): 321–337
MathSciNet
Article
Google Scholar
Endl K, Untersuchungen über Momentprobleme bei Verfahren vom Hausdorffschen Typus. Math Ann, 1960, 139: 403–432
MathSciNet
Article
Google Scholar
Hardy G H, An inequality for Hausdorff means. J Lond Math Soc, 1943, 18: 46–50
MathSciNet
Article
Google Scholar
Jakimovski A, Rhoades B E, Tzimbalario J, Hausdorff matrices as bounded operators over ℓp. Math Z, 1974, 138: 173–181
MathSciNet
Article
Google Scholar
Rhoades B E, Some classes of doubly infinite matrices. Indian J Pure Appl Math, 2003, 23(6): 419–427
MathSciNet
MATH
Google Scholar
Talebi G, Operator norms of four-dimensional Hausdorff matrices on the double Euler sequence spaces. Linear Multilinear Algebra, 2017, 65(11): 2257–2267
MathSciNet
Article
Google Scholar
Talebi G, Operator norm and lower bound of four-dimensional matrices. Indag Math, 2017, 28(6): 1134–1143
MathSciNet
Article
Google Scholar
Talebi G, Lower bound of four-dimensional Hausdorff matrices. J Inequal Appl, 2019, 2019(1): 82, 1–7
MathSciNet
Article
Google Scholar
Talebi G, Complementary results on the boundedness problem of factorizable four-dimensional matrices. Bull Malays Math Sci Soc, 2020, 43(1): 609–618
MathSciNet
Article
Google Scholar
Talebi G, Boundedness problem of four-dimensional matrices on the domain spaces of \(\cal{L}_{p}\). Results Math, 2019, 74(1): 1–16
MathSciNet
Article
Google Scholar
Yeşilkayagil M, Başar F, On the Domain of Riesz mean in the space \(\cal{L}_{s}\). Filomat, 2017, 31(4): 925–940
MathSciNet
Article
Google Scholar