Skip to main content

Toeplitz operators from hardy spaces to weighted Bergman spaces in the unit ball of Cn

Abstract

We study Toeplitz operators from Hardy spaces to weighted Bergman spaces in the unit ball of Cn. Toeplitz operators are closely related to many classical mappings, such as composition operators, the Volterra type integration operators and Carleson embeddings. We characterize the boundedness and compactness of Toeplitz operators from Hardy spaces Hp to weighted Bergman spaces A qα for the different values of p and q in the unit ball.

This is a preview of subscription content, access via your institution.

References

  1. Carleson L, An interpolation problem for bounded analytic functions. Amer J Math, 1958, 80: 921–930

    MathSciNet  Article  Google Scholar 

  2. Carleson L, Interpolations by bounded analytic functions and the corona problem. Ann of Math, 1962, 76: 547–559

    MathSciNet  Article  Google Scholar 

  3. Choe B R, Koo H, Yi H, Positive Toeplitz operators between harmonic Bergman space. Potential Anal, 2002, 17: 307–335

    MathSciNet  Article  Google Scholar 

  4. Cowen C, MacCluer B. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995

    MATH  Google Scholar 

  5. Duren P. Theory of Hp Spaces. New York-London: Academic Press, 1970. Reprint: New York: Dover, Mineola, 2000

    MATH  Google Scholar 

  6. Feldman N S, Pointwise multipliers from the Hardy space to the Bergman space. Illinois J Math, 1999, 43: 211–221

    MathSciNet  Article  Google Scholar 

  7. Hastings W, A Carleson measure theorem for Bergman spaces. Proc Amer Math Soc, 1975, 52: 237–241

    MathSciNet  Article  Google Scholar 

  8. Hu P Y, Shi J H, Multipliers on Dirichlet type spaces. Acta Math Sinica (Engl Ser), 2001, 17(2): 263–272

    MathSciNet  Article  Google Scholar 

  9. Hu Z J, Extended Cesáro operators on the Bloch space in the unit ball of Cn. Acta Mathematica Scientia, 2003, 23B: 561–566

    Article  Google Scholar 

  10. Li S, Stevic S, Riemann-Stieltjes operators between different weighted Bergman spaces. Bull Belg Math Soc Simon Stevin, 2008, 15: 677–686

    MathSciNet  Article  Google Scholar 

  11. Luecking D H, Trace ideal criteria for Toeplitz operators. J Funct Anal, 1987, 73: 345–368

    MathSciNet  Article  Google Scholar 

  12. Luecking D H, Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc Lond Math Soc, 1991, 63: 595–619

    MathSciNet  Article  Google Scholar 

  13. Luecking D H, Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Michigan Math J, 1993, 40: 333–358

    MathSciNet  Article  Google Scholar 

  14. Miihkinen S, Pau J, Perälä A, et al, Volterra type integration operators from Bergman spaces to Hardy spaces. J Funct Anal, 2020, 279(4): 108564

    MathSciNet  Article  Google Scholar 

  15. Ortega J M, Fàbrega J, Pointwise multipliers and decomposition theorems in \(F_{s}^{\infty,q}\). Math Ann, 2004, 329: 247–277

    MathSciNet  Article  Google Scholar 

  16. Ouyang C H, Yang W S, Zhao R H, Characterizations of Bergman spaces and Bloch space in the unit ball of Cn. Trans Amer Math Soc, 1995, 347: 4301–4313

    MathSciNet  MATH  Google Scholar 

  17. Pau J, Zhao R H, Weak factorization and Hankel forms for weighted Bergman spaces on the unit ball. Mathematische Annalen, 2015, 363: 363–383

    MathSciNet  Article  Google Scholar 

  18. Pau J, Zhao R H, Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Michigan Math J, 2015, 64: 759–796

    MathSciNet  Article  Google Scholar 

  19. Pau J, Characterization of Schatten class Hankel operations on weighted Bergman spaces. Duke Math J, 2016, 165: 2771–2791

    MathSciNet  Article  Google Scholar 

  20. Pau J, Integration operators between Hardy spaces on the unit ball of Cn. J Funct Anal, 2016, 270: 134–176

    MathSciNet  Article  Google Scholar 

  21. Pau J, Perälä A, A Toeplitz type operator on Hardy spaces in the unit ball. Tran Amer Math Soc, 2020, 373(5): 3031–3062

    MathSciNet  Article  Google Scholar 

  22. Peng R, Ouyang C H, Riemann-Stieltjes operators and multipliers on Qp spaces in the unit ball of Cn. J Math Anal Appl, 2011, 377: 180–193

    MathSciNet  Article  Google Scholar 

  23. Peng R, Xing X L, Jiang L Y, Pointwise multiplication operators from Hardy spaces to weighthed Bergman spaces in the unit ball of Cn. Acta Mathematica Scientia, 2019, 39B(4): 1003–1016

    Article  Google Scholar 

  24. Pommerenke C H, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment Math Helv, 1997, 52: 591–602

    Article  Google Scholar 

  25. Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980

    Book  Google Scholar 

  26. Wu Z J, Carleson measures and multipliers for Dirichlet spaces. J Funct Anal, 1999, 169: 148–163

    MathSciNet  Article  Google Scholar 

  27. Xiao J, The Qp Carleson measure problem. Adv Math, 2008, 217: 2075–2088

    MathSciNet  Article  Google Scholar 

  28. Zhang X J, The pointwise multipliers of Bloch type space βp and Dirichlet type space Dq on the unit ball of Cn. J Math Anal Appl, 2003, 285: 376–386

    MathSciNet  Article  Google Scholar 

  29. Zhao R H, On a general family of function spaces. Ann Acad Sci Fenn Math Dissertations, 1996, 105: 56 pp

  30. Zhao R H, Zhu K H. Theory of Bergman Spaces in the unit ball of Cn. Mem Soc Math Fr, 2008, 115

  31. Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, Vol 226. New York: Springer-Verlag, 2005

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Peng.

Additional information

The work was supported by the National Natural Science Foundation of China (11771441 and 11601400).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, R., Fan, Y. Toeplitz operators from hardy spaces to weighted Bergman spaces in the unit ball of Cn. Acta Math Sci 42, 349–363 (2022). https://doi.org/10.1007/s10473-022-0119-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0119-7

Key words

  • Toeplitz operators
  • Hardy spaces
  • Bergman spaces
  • Carleson measure

2010 MR Subject Classification

  • 32A37
  • 47B38