Skip to main content

A strong convergence theorem for quasi-equilibrium problems in Banach spaces

Abstract

In this paper, we study an extragradient algorithm for approximating solutions of quasi-equilibrium problems in Banach spaces. We prove strong convergence of the sequence generated by the extragradient method to a solution of the quasi-equilibrium problem.

This is a preview of subscription content, access via your institution.

References

  1. Alber Y I. Metric and generalized projection operators in Banach spaces: Properties and applications//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, 178. New York: Marcel Dekker, 1996: 15–50

    Google Scholar 

  2. Alber Y I, Reich S, An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer Math J, 1994, 4: 39–54

    MathSciNet  MATH  Google Scholar 

  3. Aussel D, Cotrina J, Iusem A N, An existence result for qussi-equilibrium problems. J Convex Anal, 2017, 24: 55–66

    MathSciNet  MATH  Google Scholar 

  4. Bianchi M, Schaible S, Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl, 1996, 90: 31–43

    MathSciNet  Article  Google Scholar 

  5. Butnariu D, Reich S, Zaslavski A J, Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J Appl Anal, 2001, 7: 151–174

    MathSciNet  Article  Google Scholar 

  6. Chadli O, Chbani Z, Riahi H, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J Optim Theory Appl, 2000, 105: 299–323

    MathSciNet  Article  Google Scholar 

  7. Combettes P L, Hirstoaga S A, Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6: 117–136

    MathSciNet  MATH  Google Scholar 

  8. Djafari Rouhani B, Kazmi K R, Rizvi S H, A hybrid extragradient convex approximation method for a system of unrelated mixed equilibrium problems. Trans Math Program Appl, 2013, 1: 82–95

    Google Scholar 

  9. Djafari Rouhani B, Mohebbi V. Extragradient methods for quasi-equilibrium problems in Banach spaces. J Aust Math Soc, 2020, doi: https://doi.org/10.1017/S1446788720000233

    Google Scholar 

  10. Djafari Rouhani B, Mohebbi V, Proximal point method for quasi-equilibrium problems in Banach spaces. Numer Funct Anal Optim, 2020, 41: 1007–1026

    MathSciNet  Article  Google Scholar 

  11. Eskandani G Z, Raeisi M, Rassias T M, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance. J Fixed Point Theory Appl, 2018, 20(3): 132

    MathSciNet  Article  Google Scholar 

  12. Iusem A N, Kassay G, Sosa W, On certain conditions for the existence of solutions of equilibrium problems. Math Program, 2009, 116: 259–273

    MathSciNet  Article  Google Scholar 

  13. Iusem A N, Mohebbi V, Extragradient methods for nonsmooth equilibrium problems in Banach spaces. Optimization, 2020, 69: 2383–2403

    MathSciNet  Article  Google Scholar 

  14. Iusem A N, Mohebbi V, Extragradient methods for vector equilibrium problems in Banach spaces. Numer Funct Anal Optim, 2019, 40: 993–1022

    MathSciNet  Article  Google Scholar 

  15. Iusem A N, Sosa W, Iterative algorithms for equilibrium problems. Optimization, 2003, 52: 301–316

    MathSciNet  Article  Google Scholar 

  16. Iusem A N, Sosa W, On the proximal point method for equilibrium problems in Hilbert spaces. Optimization, 2010, 59: 1259–1274

    MathSciNet  Article  Google Scholar 

  17. Kamimura S, Takahashi W, Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim, 2002, 13: 938–945

    MathSciNet  Article  Google Scholar 

  18. Kassay G, Reich S, Sabach S, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J Optim, 2011, 21: 1319–1344

    MathSciNet  Article  Google Scholar 

  19. Khatibzadeh H, Mohebbi V, Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math Notes, 2019, 20: 281–297

    MathSciNet  Article  Google Scholar 

  20. Khatibzadeh H, Mohebbi V, On the proximal point method for an infinite family of equilibrium problems in Banach spaces. Bull Korean Math Soc, 2019, 56: 757–777

    MathSciNet  MATH  Google Scholar 

  21. Khatibzadeh H, Mohebbi V, Proximal point algorithm for infinite pseudo-monotone bifunctions. Optimization, 2016, 65: 1629–1639

    MathSciNet  Article  Google Scholar 

  22. Moudafi A, Proximal point algorithm extended to equilibrium problems. J Nat Geom, 1999, 15: 91–100

    MathSciNet  MATH  Google Scholar 

  23. Raeisi M, Eskandani G Z, A hybrid extragradient method for a general split equality problem involving resolvents and pseudomonotone bifunctions in Banach spaces. Calcolo, 2019, 56(4): 43

    MathSciNet  Article  Google Scholar 

  24. Raeisi M, Chalack M, Eskandani G Z. Gradient projection-type algorithms for solving φ-strongly pseudomonotone equilibrium problems in Banach spaces. optimazation, to appear.

  25. Reem D, Reich S, De Pierro A, Re-examination of Bregman functions and new properties of their divergences. Optimization, 2019, 68: 279–348

    MathSciNet  Article  Google Scholar 

  26. Reich S. A weak convergence theorem for the alternating method with Bregman distances//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, 178. New York: Marcel Dekker, 1996: 313–318

    Google Scholar 

  27. Reich S, Sabach S. Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces//Optimization Theory and Related Topics, Contemp Math, 568, Israel Math Conf Proc. Providence, RI: Amer Math Soc, 2012: 225–240

    Google Scholar 

  28. Rockafellar R T, Characterization of the subdifferentials of convex functions. Pacific J Math, 1966, 17: 497–510

    MathSciNet  Article  Google Scholar 

  29. Rockafellar R T, On the maximal monotonicity of subdifferential mappings. Pacific J Math, 1970, 33: 209–216

    MathSciNet  Article  Google Scholar 

  30. Moharami R, Eskandani G Z, An extragradient algorithm for solving equilibrium problem and zero point problem in Hadamard spaces. RACSAM, 2020, 114: 152

    MathSciNet  Article  Google Scholar 

  31. Van N T T, Strodiot J J, Nguyen V H, Vuong P T, An extragradient-type method for solving nonmonotone quasi-equilibrium problems. Optimization, 2018, 67: 651–664

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mohammadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Eskandani, G.Z. A strong convergence theorem for quasi-equilibrium problems in Banach spaces. Acta Math Sci 42, 221–232 (2022). https://doi.org/10.1007/s10473-022-0112-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0112-1

Key words

  • demiclosed, extragradient algorithm
  • quasi-equilibrium problem
  • quasi φ-non-expansive mapping
  • strong convergence

2010 MR Subject Classification

  • 90C25
  • 90C30