Alber Y I. Metric and generalized projection operators in Banach spaces: Properties and applications//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, 178. New York: Marcel Dekker, 1996: 15–50
Google Scholar
Alber Y I, Reich S, An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer Math J, 1994, 4: 39–54
MathSciNet
MATH
Google Scholar
Aussel D, Cotrina J, Iusem A N, An existence result for qussi-equilibrium problems. J Convex Anal, 2017, 24: 55–66
MathSciNet
MATH
Google Scholar
Bianchi M, Schaible S, Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl, 1996, 90: 31–43
MathSciNet
Article
Google Scholar
Butnariu D, Reich S, Zaslavski A J, Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J Appl Anal, 2001, 7: 151–174
MathSciNet
Article
Google Scholar
Chadli O, Chbani Z, Riahi H, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J Optim Theory Appl, 2000, 105: 299–323
MathSciNet
Article
Google Scholar
Combettes P L, Hirstoaga S A, Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6: 117–136
MathSciNet
MATH
Google Scholar
Djafari Rouhani B, Kazmi K R, Rizvi S H, A hybrid extragradient convex approximation method for a system of unrelated mixed equilibrium problems. Trans Math Program Appl, 2013, 1: 82–95
Google Scholar
Djafari Rouhani B, Mohebbi V. Extragradient methods for quasi-equilibrium problems in Banach spaces. J Aust Math Soc, 2020, doi: https://doi.org/10.1017/S1446788720000233
Google Scholar
Djafari Rouhani B, Mohebbi V, Proximal point method for quasi-equilibrium problems in Banach spaces. Numer Funct Anal Optim, 2020, 41: 1007–1026
MathSciNet
Article
Google Scholar
Eskandani G Z, Raeisi M, Rassias T M, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance. J Fixed Point Theory Appl, 2018, 20(3): 132
MathSciNet
Article
Google Scholar
Iusem A N, Kassay G, Sosa W, On certain conditions for the existence of solutions of equilibrium problems. Math Program, 2009, 116: 259–273
MathSciNet
Article
Google Scholar
Iusem A N, Mohebbi V, Extragradient methods for nonsmooth equilibrium problems in Banach spaces. Optimization, 2020, 69: 2383–2403
MathSciNet
Article
Google Scholar
Iusem A N, Mohebbi V, Extragradient methods for vector equilibrium problems in Banach spaces. Numer Funct Anal Optim, 2019, 40: 993–1022
MathSciNet
Article
Google Scholar
Iusem A N, Sosa W, Iterative algorithms for equilibrium problems. Optimization, 2003, 52: 301–316
MathSciNet
Article
Google Scholar
Iusem A N, Sosa W, On the proximal point method for equilibrium problems in Hilbert spaces. Optimization, 2010, 59: 1259–1274
MathSciNet
Article
Google Scholar
Kamimura S, Takahashi W, Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim, 2002, 13: 938–945
MathSciNet
Article
Google Scholar
Kassay G, Reich S, Sabach S, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J Optim, 2011, 21: 1319–1344
MathSciNet
Article
Google Scholar
Khatibzadeh H, Mohebbi V, Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math Notes, 2019, 20: 281–297
MathSciNet
Article
Google Scholar
Khatibzadeh H, Mohebbi V, On the proximal point method for an infinite family of equilibrium problems in Banach spaces. Bull Korean Math Soc, 2019, 56: 757–777
MathSciNet
MATH
Google Scholar
Khatibzadeh H, Mohebbi V, Proximal point algorithm for infinite pseudo-monotone bifunctions. Optimization, 2016, 65: 1629–1639
MathSciNet
Article
Google Scholar
Moudafi A, Proximal point algorithm extended to equilibrium problems. J Nat Geom, 1999, 15: 91–100
MathSciNet
MATH
Google Scholar
Raeisi M, Eskandani G Z, A hybrid extragradient method for a general split equality problem involving resolvents and pseudomonotone bifunctions in Banach spaces. Calcolo, 2019, 56(4): 43
MathSciNet
Article
Google Scholar
Raeisi M, Chalack M, Eskandani G Z. Gradient projection-type algorithms for solving φ-strongly pseudomonotone equilibrium problems in Banach spaces. optimazation, to appear.
Reem D, Reich S, De Pierro A, Re-examination of Bregman functions and new properties of their divergences. Optimization, 2019, 68: 279–348
MathSciNet
Article
Google Scholar
Reich S. A weak convergence theorem for the alternating method with Bregman distances//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, 178. New York: Marcel Dekker, 1996: 313–318
Google Scholar
Reich S, Sabach S. Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces//Optimization Theory and Related Topics, Contemp Math, 568, Israel Math Conf Proc. Providence, RI: Amer Math Soc, 2012: 225–240
Google Scholar
Rockafellar R T, Characterization of the subdifferentials of convex functions. Pacific J Math, 1966, 17: 497–510
MathSciNet
Article
Google Scholar
Rockafellar R T, On the maximal monotonicity of subdifferential mappings. Pacific J Math, 1970, 33: 209–216
MathSciNet
Article
Google Scholar
Moharami R, Eskandani G Z, An extragradient algorithm for solving equilibrium problem and zero point problem in Hadamard spaces. RACSAM, 2020, 114: 152
MathSciNet
Article
Google Scholar
Van N T T, Strodiot J J, Nguyen V H, Vuong P T, An extragradient-type method for solving nonmonotone quasi-equilibrium problems. Optimization, 2018, 67: 651–664
MathSciNet
Article
Google Scholar