Skip to main content

Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable-exponent and arbitrary positive energy


In this paper, we consider the following nonlinear viscoelastic wave equation with variable exponents:

$$u_{tt}-\Delta u+\int_{0}^{t} g(t-\tau)\Delta u(x,\tau)\rm{d}\tau+\mu u_{t}=\vert u\vert^{p(x)-2}u,$$

where μ is a nonnegative constant and the exponent of nonlinearity p(·) and g are given functions. Under arbitrary positive initial energy and specific conditions on the relaxation function g, we prove a finite-time blow-up result. We also give some numerical applications to illustrate our theoretical results.

This is a preview of subscription content, access via your institution.


  1. Antontsev S, Wave equation with p(x, t)-Laplacian and damping term: Existence and blow-up of solutions. Differ Equ Appl, 2011, 3(4): 503–525

    MathSciNet  MATH  Google Scholar 

  2. Antontsev S, Ferreira J, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions. Nonlinear Anal: Theory Methods Appl, 2013, 93: 62–77

    MathSciNet  Article  Google Scholar 

  3. Antontsev S, Shmarev S. Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations, Vol 4. Atlantis Press, 2015

  4. Chen Y, Levine S, Rao M, Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 4(66): 1383–1406

    MathSciNet  Article  Google Scholar 

  5. Ferreira J, Messaoudi S A, On the general decay of a nonlinear viscoelastic plate equation with a strong damping and \(\overrightarrow{p}(x,t)\)-Laplacian. Nonlinear Anal: TMA, 2014, 104: 40–49

    MathSciNet  Article  Google Scholar 

  6. Gao Y, Gao W, Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents. Boundary Value Problems, 2013, 2013(1): 1–8

    MathSciNet  Article  Google Scholar 

  7. Ghegal S, Hamchi I, Messaoudi S A. Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities. Appl Anal, 2018, 1–11

  8. Guo B, Gao W, Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy. C R Mec, 2014, 342(9): 513–519

    Article  Google Scholar 

  9. Hughes T J R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, 2012

  10. Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, 2012

  11. Kafini M, Messaoudi S A, A blow up result in a nonlinear viscoelastic problem with arbitrary positive initial energy. Dyn Contin Disrete Impulsive System, Ser A: Math Anal, 2013, 20(6): 657–665

    MathSciNet  MATH  Google Scholar 

  12. Korpusov M O, Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy. Elect J Diff Eqs, 2012, 119: 1–10

    MATH  Google Scholar 

  13. Lars D, Harjulehto P, Hasto P, Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics. Berlin Heidelberg: Springer-Verlag, 2011, 2017

    MATH  Google Scholar 

  14. Mashiyev R A, Buhrii O M, Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity. J Math Anal Appl, 2011, 377: 450–463

    MathSciNet  Article  Google Scholar 

  15. Messaoudi S A, Talahmeh A A, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities. Appl Anal, 2017, 96(9): 1509–1515

    MathSciNet  Article  Google Scholar 

  16. Messaoudi S A, Talahmeh A A, A blow-up result for a quasilinear wave equation with variable- exponent nonlinearities. Math Meth Appl Sci, 2017, 40: 6976–6986

    Article  Google Scholar 

  17. Messaoudi S A, Talahmeh A A, Al-Smail J H, Nonlinear damped wave equation: existence and blow-up. Comput Math Appl, 2017, 74: 3024–3041

    MathSciNet  Article  Google Scholar 

  18. Messaoudi S A, Al-Smail J H, Talahmeh A A, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput Math Appl, 2018, 76: 1863–1875

    MathSciNet  Article  Google Scholar 

  19. Messaoudi S A, Talahmeh A A, On wave equation: Review and recent results. Arabian J of Math, 2018, 7: 113–145

    MathSciNet  Article  Google Scholar 

  20. Mu J E, Racke R, Magneto-thermo-elasticity-large-time behavior for linear systems. Adv Differ Equ, 2001, 6(3): 359–384

    MathSciNet  MATH  Google Scholar 

  21. Newmark N M, A method of computation for structural dynamics. J Engineering Mechanics Division, 1959, 85(3): 67–94

    Article  Google Scholar 

  22. Park S H, Kang H R, Blow-up of solutions for a viscoelastic wave equation with variable exponents. Math Meth Appl Sci, 2019, 42: 2083–2097

    MathSciNet  Article  Google Scholar 

  23. Persson P-O, Strang G, A Simple Mesh Generator in MATLAB. SIAM Review, 2004, 46(2): 329–345

    MathSciNet  Article  Google Scholar 

  24. Wood W L, Bossak M, Zienkiewicz O C, An alpha modification of Newmark’s method. Int J Numerical Methods Eng, 1980, 15(10): 1562–1566

    MathSciNet  Article  Google Scholar 

Download references


The authors thank Birzeit University and Sharjah University for their support. The second and the third authors are sponsored by MASEP Research Group in the Research Institute of Sciences and Engineering at University of Sharjah. Grant No. 2002144089, 2019–2020.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Salim A. Messaoudi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talahmeh, A.A., Messaoudi, S.A. & Alahyane, M. Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable-exponent and arbitrary positive energy. Acta Math Sci 42, 141–154 (2022).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • nonlinear damping
  • blow up
  • finite time
  • variable nonlinearity
  • arbitrary positive energy

2010 MR Subject Classification

  • 35A01
  • 35B44
  • 65M60