Ahern P. On the range of the Berezin transform. J Funct Anal, 2004, 215: 206–216
MathSciNet
MATH
Google Scholar
Ahern P, Flores M, Rudin W. An invariant volume-mean-value property. J Funct Anal, 1993, 111: 380–397
MathSciNet
MATH
Google Scholar
Aleman A, Pott S, Reguera C. Sarason conjecture on the Bergman space. Int Math Res Not IMRN, 2017, 14: 4320–4349
MathSciNet
MATH
Google Scholar
Arazy J, Englis M. Iterates and boundary behavior of the Berezin transform. Ann Inst Fourier, 2001, 51: 1101–1133
MathSciNet
MATH
Google Scholar
Arazy J, Fisher S, Peetre J. Hankel operators on weighted Bergman spaces. Amer Math J, 1988, 110: 989–1053
MathSciNet
MATH
Google Scholar
Arazy J, Zhang G. Invariant mean value and harmonicity in Cartan and Siegel domains//Interactions Between Functional Analysis, Harmonic Analysis, and Probability, (Columbia, MO, 1994). Lecture Notes in Pure and Applied Math 175. New York: Marcel Dekker, 1996: 19–40
Google Scholar
Axler S, Cuckovic Z. Commuting Toeplitz operators with harmonic symbols. Integral Equations Operator Theory, 1991, 14: 1–12
MathSciNet
MATH
Google Scholar
Axler S, Zheng D. Compact operators via the Berezin transform. Indiana Univ Math J, 1998, 47: 387–400
MathSciNet
MATH
Google Scholar
Axler S, Zheng D. The Berezin transform on the Toeplitz algebra. Studia Math, 1998, 127: 113–136
MathSciNet
MATH
Google Scholar
Bauer W, Coburn L, Isralowitz J. Heat flow, BMO, and compactness of Toeplitz operators. J Funct Anal, 2010, 259: 57–78
MathSciNet
MATH
Google Scholar
Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space F
pα
. J Funct Anal, 2012, 263: 1323–1355
MathSciNet
MATH
Google Scholar
Bekolle D, Berger C, Coburn L, Zhu K. BMO in the Bergman metric on bounded symmetric domains. J Funct Anal, 1990, 93: 64–89
MathSciNet
MATH
Google Scholar
Berezin F. Wick and anti-Wick symbols of operators (Russian). Mat Sb, 1971, 86: 578–610
MathSciNet
Google Scholar
Berezin F. Covariant and contra-variant symbols of operators. Math USSR-Izv, 1972, 6: 1117–1151
Google Scholar
Berezin F. Quantization. Math USSR-Izv, 1974, 8: 1109–1163
MATH
Google Scholar
Berezin F. Quantization of complex symmetric spaces (Russian). Izv Akad Ser Mat, 1975, 39: 363–402
MATH
Google Scholar
Berezin F. General concept of quantization. Comm Math Phys, 1975, 40: 153–174
MathSciNet
MATH
Google Scholar
Berezin F. Introduction to Superanalysis. Dordrecht: Reidel, 1987
MATH
Google Scholar
Berger C, Coburn L. Toeplitz operators and quantum mechanics. J Funct Anal, 1986, 68: 273–299
MathSciNet
MATH
Google Scholar
Berger C, Coburn L. Toeplitz operators on the Segal-Bargmann space. Trans Amer Math Soc, 1987, 301: 813–829
MathSciNet
MATH
Google Scholar
Berger C, Coburn L. Heat flow and Berezin-Toeplitz estimates. Amer J Math, 1994, 116: 563–590
MathSciNet
MATH
Google Scholar
Berger C, Coburn L, Zhu K. BMO in the Bergman metric on the classical domains. Bull Amer Math Soc, 1987, 17: 133–136
MathSciNet
MATH
Google Scholar
Berger C, Coburn L, Zhu K. Function theory on Cartan domains and Berezin-Toeplitz symbol calculus. Amer J Math, 1988, 110: 921–953
MathSciNet
MATH
Google Scholar
Bommier-Hato H. Lipschitz estimates for the Berezin transform. J Funct Spaces Appl, 2010, 8: 103–128
MathSciNet
MATH
Google Scholar
Bommier-Hato H. Derivatives of the Berezin transform. J Funct Spaces Appl, 2012, 15 pages
Bommier-Hato H, Youssfi E, Zhu K. Sarason’s Toeplitz product problem for a class of Fock spaces. Bull Sci Math, 2017, 141: 408–442
MathSciNet
MATH
Google Scholar
H. Cho, J. Park, and K. Zhu, Products of Toeplitz operators on the Fock space. Proc Amer Math Soc, 2014, 142: 2483–2489
MathSciNet
MATH
Google Scholar
Coburn L. A Lipschitz estimate for Berezin’s operator calculus. Proc Amer Math Soc, 2005, 133: 127–131
MathSciNet
MATH
Google Scholar
Coburn L. Sharp Berezin-Lipschitz estimates. Proc Amer Math Soc, 2007, 135: 1163–1168
MathSciNet
MATH
Google Scholar
Coburn L. Berezin-Toeplitz quantization//Algebraic Methods in Operator Theory. Boston: Birkhauser, 1994: 101–108
Google Scholar
Coburn L, Isralowitz J, Li B. Toeplitz operators with BMO symbols on the Segal-Bargmann space. Trans Amer Math Soc, 2011, 363: 3015–3030
MathSciNet
MATH
Google Scholar
Coburn L, Li B. Directional derivative estimates for Berezin’s operator calculus. Proc Amer Math Soc, 2008, 136: 641–649
MathSciNet
MATH
Google Scholar
Cuckovic Z, Li B. Berezin Transform, Mellin Transform and Toeplitz Operators. Complex Anal Oper Theory, 2012, 6: 189–218
MathSciNet
MATH
Google Scholar
Davidson K, Douglas R. The generalized Berezin transform and commutator ideals. Pacific J Math, 2005, 222: 29–56
MathSciNet
MATH
Google Scholar
Duren P, Schuster A. Bergman Spaces. American Mathematical Society, 2004
Englis M. Functions invariant under the Berezin transform. J Funct Anal, 1994, 121: 233–254
MathSciNet
MATH
Google Scholar
Englis M. Toeplitz operators and the Berezin transform on H2. Linear Alg Appl, 1995, 223/224: 171–204
MATH
Google Scholar
Englis M. Berezin transform and the Laplace-Beltrami operator. Algebra i Analiz, 1995, 7: 176–195
MathSciNet
MATH
Google Scholar
Englis M. Asymptotics of the Berezin transform and quantization on planar domains. Duke Math J, 1995, 79: 57–76
MathSciNet
MATH
Google Scholar
Englis M. Berezin quantization and reproducing kernels on complex domains. Trans Amer Math Soc, 1996, 348: 411–479
MathSciNet
MATH
Google Scholar
Englis M. Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integral Equations Operator Theory, 1999, 33: 426–455
MathSciNet
MATH
Google Scholar
Englis M, Otáhalová R. Covariant derivatives of the Berezin transform. Trans Amer Math Soc, 2011, 363: 5111–5129
MathSciNet
MATH
Google Scholar
Englis M, Zhang G. On the derivatives of the Berezin transform. Proc Amer Math Soc, 2006, 134: 2285–2294
MathSciNet
MATH
Google Scholar
Le Floch Y. A Brief Introduction to Berezin-Toeplitz Operators on Compact Kähler Manifolds. CRM Short Courses. Springer, 2018
Garnett J. Bounded Analytic Functions. New York: Academic Press, 1981
MATH
Google Scholar
Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. New York: Springer-Verlag, 2000
MATH
Google Scholar
Ioos L, Kaminker V, Polterovich L, Shmoish D. Spectral aspects of the Berezin transform. preprint, 2020
Ioos L, Lu W, Ma X, Marinescu G. Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds. J Geom Anal, 2020, 30: 2615–2646
MathSciNet
MATH
Google Scholar
Janson S, Peetre J, Rochberg R. Hankel forms and the Fock space. Revista Mat Ibero-Amer, 1987, 3: 58–80
MathSciNet
MATH
Google Scholar
Karabegov A, Schlichenmaier M. Identification of Berezin-Toeplitz deformation quantization. J Reine Angew Math, 2001, 540: 49–76
MathSciNet
MATH
Google Scholar
Kilic S. The Berezin symbol and multipliers of functional Hilbert spaces. Proc Amer Math Soc, 1995, 123: 3687–3691
MathSciNet
MATH
Google Scholar
Korenblum B, Zhu K H. An application of Tauberian theorems to Toeplitz operators. J Operator Theory, 1995, 33: 353–361
MathSciNet
MATH
Google Scholar
Lee J. Properties of the Berezin transform of bounded functions. Bull Austral Math Soc, 1999, 59: 21–31
MathSciNet
MATH
Google Scholar
Li B. The Berezin transform and Laplace-Beltrami operator. J Math Anal Appl, 2007, 327: 1155–1166
MathSciNet
MATH
Google Scholar
Li B. The Berezin transform and m-th order Bergman metric. Trans Amer Math Soc, 2011, 363: 3031–3056
MathSciNet
MATH
Google Scholar
Luecking D, Zhu K. Composition operators belonging to the Schatten ideals. Amer J Math, 1992, 114: 1127–1145
MathSciNet
MATH
Google Scholar
Ma X, Marinescu G. Berezin-Toeplitz quantization on Kähler manifolds. J Reine Angew Math, 2012, 662: 1–56
MathSciNet
MATH
Google Scholar
Ma P, Yan F, Zheng D, Zhu K. Products of Hankel operators on the Fock space. J Funct Anal, 2019, 277: 2644–2663
MathSciNet
MATH
Google Scholar
Ma P, Yan F, Zheng D, Zhu K. Mixed products of Hankel and Toeplitz operators on the Fock space. J Operator Theory, 2020, 84: 35–47
MathSciNet
MATH
Google Scholar
MacCluer B. Compact composition operators on Hp(Bn). Mich Math J, 1985, 32: 237–248
MATH
Google Scholar
MacCluer B, Shapiro J. Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian Math J, 1986, 38: 878–906
MathSciNet
MATH
Google Scholar
Nam K, Zheng D, Zhong C. m-Berezin transform and compact operators. Rev Mat Iberoam, 2006, 22: 867–892
MathSciNet
MATH
Google Scholar
Nazarov F. A counterexample to Sarason’s conjecture. preprint, 1997
Nordgren E, Rosenthal P. Boundary values of Berezin symbols. Operator Theory Advances and Applications, 1994, 73: 362–368
MathSciNet
MATH
Google Scholar
Peetre J. The Berezin transform and Ha-plitz operators. J Operator Theory, 1990, 24: 165–186
MathSciNet
MATH
Google Scholar
Rao N V. The range of the Berezin transform. J Math Sci (NY), 2018, 228(6): 684–694
MathSciNet
MATH
Google Scholar
Sarason D. Products of Toeplitz operators//Havin V P, Nikolski N K, eds. Linear and Complex Analysis Problem Book 3, Part I, Lecture Notes in Math 1573. Berlin: Springer, 1994: 318–319
Google Scholar
Schlichenmaier M. Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv Math Phys, 2010: 927280
Shapiro J. The essential norm of a composition operator. Ann of Math, 1987, 12: 375–404
MathSciNet
MATH
Google Scholar
Shklyarov D, Zhang G. The Berezin transform on the quantum unit ball. J Math Physics, 2003, 44(4344): 4344–4373
MathSciNet
MATH
Google Scholar
Stroethoff K. The Berezin transform and operators on spaces of analytic functions//Linear operators (Warsaw, 1994), Banach Center Publ 38. Warsaw: Polish Acad Sci, 1997: 361–380
MATH
Google Scholar
Stroethoff K, Zheng D. Toeplitz and Hankel operators on Bergman spaces. Trans Amer Math Soc, 1992, 329: 773–794
MathSciNet
MATH
Google Scholar
Stroethoff K, Zheng D. Products of Hankel and Toeplitz operators on the Bergman space. J Funct Anal, 1999, 169: 289–313
MathSciNet
MATH
Google Scholar
Suarez D. Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev Mat Iberoam, 2004, 20: 563–610
MathSciNet
MATH
Google Scholar
Suarez D. Approximation and the n-Berezin transform of operators on the Bergman space. J Reine Angew Math, 2005, 581: 175–192
MathSciNet
MATH
Google Scholar
Suarez D. The essential norm of operators in the Toeplitz algebra on Ap(Bn). Indiana Univ Math J, 2007, 56: 2185–2232
MathSciNet
MATH
Google Scholar
Untenberger A, Upmeier H. The Berezin transform and invariant differential operators. Comm Math Phys, 1994, 164: 563–597
MathSciNet
MATH
Google Scholar
Zhang G. Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math, 1998, 97: 371–388
MathSciNet
MATH
Google Scholar
Zheng D. Hankel operators and Toeplitz operators on the Bergman space. J Funct Anal, 1989, 83: 98–120
MathSciNet
MATH
Google Scholar
Zheng D. The distribution function inequality and products of Toeplitz operators and Hankel operators. J Funct Anal, 1996, 138: 477–501
MathSciNet
MATH
Google Scholar
Zhu K. VMO, ESV, and Toeplitz operators on the Bergman space. Trans Amer Math Soc, 1987, 302: 617–646
MathSciNet
MATH
Google Scholar
Zhu K. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J Operator Theory, 1988, 20: 329–357
MathSciNet
MATH
Google Scholar
Zhu K. Schatten class Hankel operators on the Bergman space of the unit ball. Amer J Math, 1991, 113: 147–167
MathSciNet
MATH
Google Scholar
Zhu K. Operator Theory in Function Spaces. American Mathematical Society, 2007
Zhu K. Analysis on Fock Spaces. New York: Springer, 2012
MATH
Google Scholar
Zorboska N. The Berezin transform and radial operators. Proc Amer Math Soc, 2002, 131: 793–800
MathSciNet
MATH
Google Scholar