Osserman R. Proof of a conjecture of Nirenberg. Comm Pure Appl Math, 1959, 12: 229–232
MathSciNet
Article
Google Scholar
Fujimoto H. On the number of exceptional values of the Gauss map of minimal surfaces. J Math Soc Japan, 1988, 40: 235–247
MathSciNet
Article
Google Scholar
Moser J. On Harnack’s theorem for elliptic differential equations. Comm Pure Appl Math, 1961, 14: 577–591
MathSciNet
Article
Google Scholar
Bombieri E, De Giorgi E, Giusti E. Minimal cones and the Bernstein problem. Invent Math, 1969, 7: 243–268
MathSciNet
Article
Google Scholar
Assimos R, Jost J. The geometry of maximum principles and a Bernstein theorem in codimension 2. arXiv:1811.09869, 2019
Jost J, Xin Y L, Yang L. The regularity of harmonic maps into spheres and applications to Bernstein problems. J Differ Geom, 2012, 90: 131–176
MathSciNet
Article
Google Scholar
Jost J, Xin Y L, Yang L. The Gauss image of entire graphs of higher codimension and Bernstein type theorems. Calc Var Partial Differential Equations, 2013, 47: 711–737
MathSciNet
Article
Google Scholar
Bernstein S. Sur les surfaces définies au moyen de leur courbure moyenne ou totale. Ann Ec Norm Sup, 1910, 27: 233–256
Article
Google Scholar
Chern S S. On the curvature of a piece of hypersurface in Euclidean space. Abh Math Sem Hamburg, 1965, 29: 77–91
MathSciNet
Article
Google Scholar
Hoffman D A, Osserman R, Schoen R. On the Gauss map of complete surfaces of constant mean curvature in ℝ3 and ℝ4. Comment Math Helv, 1982, 57: 519–531
MathSciNet
Article
Google Scholar
Jiang X Y, Sun H J, Zhao P B. Rigidity and gap results for the morse index of self-Shrinkers with any codimension. Results Math, 2019, 74: 68
MathSciNet
Article
Google Scholar
Cheng Q M, Hori H, Wei G. Complete Lagrangian self-shrinkers in ℝ4. arXiv:1802.02396, 2018
Wang L. A Bernstein type theorem for self-similar shrinkers. Geom Dedicata, 2011, 151: 297–303
MathSciNet
Article
Google Scholar
Ding Q, Xin Y L, Yang L. The rigidity theorems of self-shrinkers via Gauss maps. Adv Math, 2016, 303: 151–174
MathSciNet
Article
Google Scholar
Zhou H. A Bernstein type result for graphical self-shrinkers in ℝ4. Int Math Res Not, 2018, 21: 6798–6815
MathSciNet
Article
Google Scholar
Abresch U, Langer J. The normalized curve shortening flow and homothetic solutions. J Differ Geom, 1986, 23(2): 175–196
MathSciNet
Article
Google Scholar
Basto-Gonçalves J. The Gauss map for Lagrangean and isoclinic surfaces. arxiv:1304.2237, 2013
Li H, Wang X. New characterizations of the Clifford torus as a Lagrangian self-shrinker. J Geom Anal, 2017, 27: 1393–1412
MathSciNet
Article
Google Scholar
Li X X, Li X. On the Lagrangian angle and the Kähler angle of immersed surfaces in the complex plane ℂ2. Acta Math Sci, 2019, 39B(6): 1695–1712
Article
Google Scholar
Little J. On singularities of submanifolds of higher dimensional Euclidean spaces. Ann Mat Pura ed Appl, 1969, 83: 261–335
MathSciNet
Article
Google Scholar
Borisenko A A, Nikolaevskil Y A. Grassman manifolds and the Grassmann image of submanifolds. Usp Mat Nauk, 1991, 46(2): 41–83
Google Scholar
Lichnerowicz A. Applications harmoniques et variétés kähleriennes//Symposia Mathematica. London: Academic Press, 1969: 341–402
Google Scholar
Course N. f-Harmonic Maps [D]. Warwick: University of Warwick, 2004
MATH
Google Scholar
Rimoldi M, Veronelli G. Topology of steady and expanding gradient Ricci solitons via f-harmonic maps. Differ Geom Appl, 2013, 31(5): 623–638
MathSciNet
Article
Google Scholar
Hoffman D A, Osserman R. The Gauss map of surfaces in ℝn. J Differ Geom, 1983, 18: 733–754
Article
Google Scholar
Hoffman D A, Osserman R. The Gauss map of surfaces in ℝ3 and ℝ4. Proc London Math Soc, 1985, 50(3): 27–56
MathSciNet
Article
Google Scholar
Cheng X, Zhou D. Volume estimates about shrinkers. Proc Amer Math Soc, 2013, 141: 687–696
MathSciNet
Article
Google Scholar
Smoczyk K. Self-shrinkers of the mean curvature flow in arbitrary codimension. Int Math Res Not, 2005, 48: 2983–3004
MathSciNet
Article
Google Scholar
Colding T H, Minicozzi II W P. Generic mean curvature flow I: generic singularities. Ann Math, 2012, 175: 755–833
MathSciNet
Article
Google Scholar
Enomoto K. The Gauss image of flat surfaces in ℝ4. Kodai Math J, 1986, 9: 19–32
MathSciNet
Article
Google Scholar