Skip to main content
Log in

Continuous dependence on data under the Lipschitz metric for the rotation-Camassa-Holm equation

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this article, we consider the Lipschitz metric of conservative weak solutions for the rotation-Camassa-Holm equation. Based on defining a Finsler-type norm on the tangent space for solutions, we first establish the Lipschitz metric for smooth solutions, then by proving the generic regularity result, we extend this metric to general weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom J M. The Local Structure of Smooth Maps of Manifolds [B.A. thesis]. Cambrige, MA: Harvard University, 2004

    Google Scholar 

  2. Bressan A, Chen G. Generic regularity of conservative solutions to a nonlinear wave equation. Ann Inst Henri Poincar’e-AN, 2017, 334: 335–354

    Article  MathSciNet  Google Scholar 

  3. Bressan A, Chen G. Lipschitz metric for a class of nonlinear wave equations. Arch Rat Mech Anal, 2017, 226: 1303–1343

    Article  MathSciNet  Google Scholar 

  4. Bressan A, Chen G, Zhang Q. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Disc Cont Dyn Syst A, 2015, 35: 25–42

    Article  MathSciNet  Google Scholar 

  5. Bressan A, Constantin A. Global conservative solutions to the Camassa-Holm equation. Arch Rat Mech Anal, 2007, 183: 215–239

    Article  MathSciNet  Google Scholar 

  6. Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5: 1–27

    Article  MathSciNet  Google Scholar 

  7. Bressan A, Fonte M. An optimal transportation metric for solutions of the Camassa-Holm equation. Methods Appl Anal, 2005, 12: 191–220

    MathSciNet  MATH  Google Scholar 

  8. Bressan A, Holden H, Raynaud X. Lipschitz metric for the Hunter-Saxton equation. J Math Pures Appl, 2010, 94: 68–92

    Article  MathSciNet  Google Scholar 

  9. Cai H, Chen G, Chen R M, Shen Y N. Lipschitz Metric for the Novikov Equation. Arch Rat Mech Anal, 2018, 229: 1091–1137

    Article  MathSciNet  Google Scholar 

  10. Cai H, Chen G, Shen Y N. Lipschitz metric for conservative solutions of the two-component Camassa-Holm system. Z Angew Math Phys, 2017, 68: 5

    Article  MathSciNet  Google Scholar 

  11. Cai H, Tan Z. Lipschitz metric for conservative solutions of the modified two-component Camassa-Holm system. Z Angew Math Phys, 2018, 69: 69–98

    Article  MathSciNet  Google Scholar 

  12. Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661–1664

    Article  MathSciNet  Google Scholar 

  13. Cao C S, Holm D D, Titi E S. Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J Dynam Differential Equations, 2004, 16: 167–178

    Article  MathSciNet  Google Scholar 

  14. Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier (Grenoble), 2000, 50: 321–362

    Article  MathSciNet  Google Scholar 

  15. Constantin A, Escher J. On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math Z, 2000, 233: 75–91

    Article  MathSciNet  Google Scholar 

  16. Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181: 229–243

    Article  MathSciNet  Google Scholar 

  17. Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Scuola Norm Sup Pisa, 1998, 26: 303–328

    MathSciNet  MATH  Google Scholar 

  18. Fuchssteiner B, Fokas A S. Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D, 1981/1982, 4: 47–66

    Article  MathSciNet  Google Scholar 

  19. Gui G, Liu Y, Luo T. Model equations and traveling-wave solutions for shallow-water waves with the Coriolis effect. Journal of Nonlinear Science, 2019, 29: 993–1039

    Article  MathSciNet  Google Scholar 

  20. Gui G, Liu Y, Sun J. A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J Math Fluid Mech, 2019, 21: 27

    Article  MathSciNet  Google Scholar 

  21. Grunert K, Holden H, Raynaud X. Lipschitz metric for the periodic Camassa-Holm equation. J Differential Equations, 2011, 250: 1460–1492

    Article  MathSciNet  Google Scholar 

  22. Grunert K, Holden H, Raynaud X. Lipschitz metric for the Camassa-Holm equation on the line. Disc Cont Dyn Syst A, 2013, 33: 2809–2827

    Article  MathSciNet  Google Scholar 

  23. Golubitsky M, Guillemin V. Stable Mappings and Their Singularities. Graduate Texts in Mathematics, 14. New York: Springer-Verlag, 1973

    Google Scholar 

  24. Holden H, Raynaud X. A convergent numerical scheme for the Camassa-Holm equation based on multi-peakons. Disc Cont Dyn Syst A, 2006, 14: 505–523

    Article  Google Scholar 

  25. Li M J, Zhang Q T. generic regularity of conservative solutions to Camassa-Holm type equations. SIAM J Math Anal, 2017, 49: 2920–2949

    Article  MathSciNet  Google Scholar 

  26. Jamroz G. On uniqueness of dissipative solutions of the Camassa-Holm equation. arXiv.1611.00333v5

  27. Li Y A, Olver P J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Geom Phys, 2000, 162: 27–63

    MathSciNet  MATH  Google Scholar 

  28. Li Z G, Liu R. Blow-up solutions for a case of b-family equations. Acta Math Sci, 2020, 40B(4): 910–920

    Article  MathSciNet  Google Scholar 

  29. Zhou S M, Mu C L, Wang L C. Self-similar solutions and blow-up phenomena for a two-component shallow water system. Acta Math Sci, 2013, 33B(3): 821–829

    Article  MathSciNet  Google Scholar 

  30. Tu X Y, Liu Y, Mu C L. Existence and uniqueness of the global conservative weak solutions to the rotation-Camassa-Holm equation. J Differential Equations, 2019, 266: 4864–4900

    Article  MathSciNet  Google Scholar 

  31. Villani C. Topics in Optmal Transportation. Providence RI: American Mathematical Society, 2003

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Tu.

Additional information

The first author was supported by Chongqing Post-doctoral Innovative Talent Support Progran, the Fundamental Research Funds for the Central Universities (XDJK2020C054), China Postdoctoral Science Foundation (2020M673102), the Natural Science Foundation of Chongqing, China, (cstc2020jcyj-bshX0071). The second author was supported by the Fundamental Research Funds for the Central Universities (2019CDJCYJ001, 2020CQJQ-Z001), the NSFC (11771062 and 11971082), Chongqing Key Laboratory of Analytic Mathematics and Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Mu, C. & Qiu, S. Continuous dependence on data under the Lipschitz metric for the rotation-Camassa-Holm equation. Acta Math Sci 41, 1–18 (2021). https://doi.org/10.1007/s10473-021-0101-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0101-9

Key words

2010 MR Subject Classification

Navigation