On the Complete 2-Dimensional λ-Translators with a Second Fundamental form of Constant Length


In this article we study the two-dimensional complete λ-translators immersed in the Euclidean space ℝ3 and Minkovski space ℝ31 . We obtain two classification theorems: one for two-dimensional complete λ-translators x: M2 → ℝ3 and one for two-dimensional complete space-like λ-translators x: M2 → ℝ31 , with a second fundamental form of constant length.

This is a preview of subscription content, access via your institution.


  1. [1]

    Altschuler S J, Wu L F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc Var, 1994, 2: 101–111

    MathSciNet  Article  Google Scholar 

  2. [2]

    Chen Q, Qiu H B. Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv Math, 2016, 294: 517–531

    MathSciNet  Article  Google Scholar 

  3. [3]

    Cheng Q -M, Ogata S. 2-dimensional complete self-shrinkers in ℝ3. Math Z, 2016, 284: 537–542

    MathSciNet  Article  Google Scholar 

  4. [4]

    Cheng Q-M, Ogata S, Wei G X. Rigidity theorems of λ-hypersurfaces. Comm Anal Geom, 2016, 24: 45–58

    MathSciNet  Article  Google Scholar 

  5. [5]

    Cheng Q -M, Wei G X. Complete λ-surfaces in ℝ3. arXiv:1807.06760v1 [math.DG], 2018

  6. [6]

    Cheng Q -M, Wei G X. Complete λ-hypersurfaces of the weighted volume-preserving mean curvature flow. Calc Var, 2018, 57(2): Art 32, DOI https://doi.org/10.1007/s00526-018-1303-4

  7. [7]

    Clutterbuck J, Schnürer O, F Schulze. Stability of translating solutions to mean curvature flow. Calc Var, 2007, 29: 281–293

    MathSciNet  Article  Google Scholar 

  8. [8]

    Gromov M. Isoperimetry of waists and concentration of maps. Geom Func Anal, 2003, 13: 178–215

    MathSciNet  Article  Google Scholar 

  9. [9]

    Halldorsson H P. Helicoidal surfaces rotating/translating under the mean curvature flow. Geom Dedicata, 2013, 162: 45–65

    MathSciNet  Article  Google Scholar 

  10. [10]

    Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var, 1999, 8: 1–14

    MathSciNet  Article  Google Scholar 

  11. [11]

    Ilmanen T. Elliptic regularization and partial regularity for motion by mean curvature. Mem Amer Math Soc, 1994, 108

  12. [12]

    Li X X, Li X. On the Lagrangian angle and the Kühler angle of immersed surfaces in the complex plane C2. Acta Math Sci, 2019, 39B(6): 1695–1712

    Article  Google Scholar 

  13. [13]

    López R. Invariant surfaces in Euclidean space with a log-linear density. Adv Math, 2018, 339: 285–309

    MathSciNet  Article  Google Scholar 

  14. [14]

    López R. Compact λ-translating solitons with boundary. Mediterranean J Math, 2018, 15(5): Art 196

    Google Scholar 

  15. [15]

    Martín F, Savas-Halilaj A, Smoczyk K. On the topology of translating solitons of the mean curvature flow. Calc Var, 2015, 54: 2853–2882

    MathSciNet  Article  Google Scholar 

  16. [16]

    Minh N, Hieu D T. Ruled minimal surfaces in R3 with density ez. Pacific J Math, 2009, 243: 277–285

    MathSciNet  Article  Google Scholar 

  17. [17]

    Morgan F. Manifolds with density. Notices Amer Math Soc, 2005, 52: 853–858

    MathSciNet  MATH  Google Scholar 

  18. [18]

    Pyo J. Compact translating solitons with non-empty planar boundary. Diff Geom App, 2016, 47: 79–85

    MathSciNet  Article  Google Scholar 

  19. [19]

    Shahriyari L. Translating Graphs by Mean Curvature Flow [D]. The Johns Hopkins University, 2013

  20. [20]

    Smith G. On complete embedded translating solitons of the mean curvature flow that area of finite genus. arXiv:1501.04149 [math.DG], 2015

  21. [21]

    Wang X-J. Convex solutions to the mean curvature flow. Ann Math, 2011, 173: 1185–1239

    MathSciNet  Article  Google Scholar 

  22. [22]

    White B. Subsequent singularities in mean-convex mean curvature flow. Calc Var Pertial Diff Equ, 2015, 54(2): 1457–1468

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xingxiao Li.

Additional information

Supported by Foundation of Natural Sciences of China (11671121, 11871197 and 11971153).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qiao, R. & Liu, Y. On the Complete 2-Dimensional λ-Translators with a Second Fundamental form of Constant Length. Acta Math Sci 40, 1897–1914 (2020). https://doi.org/10.1007/s10473-020-0618-3

Download citation

Key words

  • singular solution
  • mean curvature flow
  • second fundamental form
  • λ-translator
  • classification

2010 MR Subject Classification

  • 53C44
  • 53C40