The Existence of a Nontrivial Weak Solution to a Double Critical Problem Involving a Fractional Laplacian in ℝN with a Hardy Term

Abstract

In this paper, we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:

$${( - \Delta )^s}u - \gamma {u \over {{{\left| x \right|}^{2s}}}} = {{{{\left| u \right|}^{2_s^ * (\beta ) - 2}}u} \over {{{\left| x \right|}^\beta }}} + \left[ {{I_\mu } * {F_\alpha }( \cdot ,u)} \right](x){f_\alpha }(x,u),\;\;\;\;u \in {\dot H^{^s}}({\mathbb{R}^n}),$$
(0.1)

where \(s \in (0,1),0 \le \alpha ,\beta < 2c < n,\mu \in (0,n),\gamma < {\gamma _H},{I_\mu }(x) = {\left| x \right|^{ - \mu }},{F_\alpha }(x,u) = {{{{\left| {u(x)} \right|}^{2_\mu ^\# (\alpha )}}} \over {{{\left| x \right|}^{{\delta _\mu }(\alpha )}}}},\;{f_\alpha }(x,u) = {{{{\left| {u(x)} \right|}^{2_\mu ^\# (\alpha ) - 2}}u(x)} \over {{{\left| x \right|}^{{\delta _\mu }(\alpha )}}}},2_\mu ^\# (\alpha ) = (1 - {\textstyle{\mu \over {2n}}}) \cdot 2_s^ * (\alpha ),\;{\delta _\mu }(\alpha ) = (1 - {\textstyle{\mu \over {2n}}})\alpha ,\;2_s^ * (\alpha ) = {{2(n - \alpha )} \over {n - 2s}}\) and \({\gamma _H} = {4^s}{{{\Gamma ^2}({\textstyle{{n + 2s} \over 4}})} \over {{\Gamma ^2}({\textstyle{{n - 2s} \over 4}})}}.\). We show that problem (0.1) admits at least a weak solution under some conditions.

To prove the main result, we develop some useful tools based on a weighted Morrey space. To be precise, we discover the embeddings

$${\dot H^s}({\mathbb{R}^n})\alpha {L^{2_s^ * (\alpha )}}({\mathbb{R}^n},{\left| y \right|^{ - \alpha }})\alpha {L^{p,{\textstyle{{n - 2s} \over 2}}p + pr}}({\mathbb{R}^n},{\left| y \right|^{ - pr}}),$$
(0.2)

where s ∈ (0, 1), 0 < α < 2s < n, p ∈ [1, 2s*(α)) and \(r = {\textstyle{\alpha \over {2_s^ * (\alpha )}}}.\). We also establish an improved Sobolev inequality,

$${\left( {\int_{{\mathbb{R}^n}} {{{{{\left| {u(y)} \right|}^{2_s^ * (\alpha )}}} \over {{{\left| y \right|}^\alpha }}}} {\rm{d}}y} \right)^{{\textstyle{1 \over {2_s^ * (\alpha )}}}}} \le C\left\| u \right\|_{{{\dot H}^s}({\mathbb{R}^n})}^\theta \left\| u \right\|_{{L^{p,{\textstyle{{n - 2s} \over 2}}p + pr}}({\mathbb{R}^n},{{\left| y \right|}^{ - pr}})}^{1 - \theta },\;\;\;\;\;\;\forall u \in {\dot H^s}({\mathbb{R}^n}),$$
(0.3)

where \(s \in (0,1),\;0 \le \alpha < 2s < n,p \in [1,2_s^ * (\alpha )),\;r = {\alpha \over {2_s^ * (\alpha )}},\;0 < \max {\rm{\{ }}{2 \over {2_s^ * (\alpha )}}{\rm{,}}{{2_s^ * - 1} \over {2_s^ * (\alpha )}}{\rm{\} }} < \theta < 1,\;2_s^ * = {{2n} \over {n - 2s}}\) and C= C(n, s, α) 0 is a constant. Inequality (0.3) is a more general form of Theorem 1 in Palatucci, Pisante [1].

By using the mountain pass lemma along with (0.2) and (0.3), we obtain a nontrivial weak solution to problem (0.1) in a direct way. It is worth pointing out that (0.2) and (0.3) could be applied to simplify the proof of the existence results in [2] and [3].

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Palatucci G, Pisante A. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc Var Partial Differ Equ, 2014, 50(3/4): 799–829

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    Ghoussoub N, Shakerian S. Borderline variational problems involving fractional Laplacians and critical singularities. Adv Nonlinear Stud, 2015, 15(3): 527–555

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    Filippucci R, Pucci P, Robert F. On a p-Laplace equation with multiple critical nonlinearities. J Math Pures Appl, 2009, 91(2): 156–177

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    Nezza E D, Palatucci G, Valdinoci E. Hitchhikers guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521–573

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    Yang J, Wu F. Doubly critical problems involving fractional Laplacians in ℝN. Adv Nonlinear Stud, 2017, 17(4): 677–690

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 12: 5703–5743

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    Ghoussoub N, Robert F. The Hardy-Schrodinger operator with interior singularity: The remaining cases. Calc Var Partial Differ Equ, 2016, 56(5): 149

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    Ghoussoub N, Robert F, Shakerian S, Zhao M. Mass and asymptotics associated to fractional Hardy-Schrodinger operators in critical regimes. Commun Part Differ Equ, 2018: 1–34

  9. [9]

    Lorenzo D A, Jannelli E. Nonlinear critical problems for the biharmonic operator with Hardy potential. Calc Var Partial Differ Equ, 2015, 54(1): 365–396

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    Kang D, Li G. On the elliptic problems involving multi-singular inverse square potentials and multicritical Sobolev-Hardy exponents. Nonlinear Anal, 2007, 66: 1806–1816

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    Chen W. Fractional elliptic problems with two critical Sobolev-Hardy exponents. Electronic Journal of Differential Equations, 2018, (2018)

  12. [12]

    Huang Y, Kang D. On the singular elliptic systems involving multiple critical Sobolev exponents. Nonlinear Analysis, 2011, 74(2): 400–412

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    Wang J, Shi J. Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. Calc Var Partial Differ Equ, 2017, 56(6): 168

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    Wang Z P, Zhou H S. Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in ℝN. Acta Math Sci, 2006, 26B(3): 525–536

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    Zhang J G, Hsu T S. Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Acta Math Sci, 2020, 40B(3): 679–699

    MathSciNet  Article  Google Scholar 

  16. [16]

    Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Commun Part Differ Equ, 2007, 32: 1245–1260

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    Catrina F, Wang Z-Q. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and simmetry of extremal functions. Comm Pure Appl Math, 2001, 54: 229–258

    MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    Chern J L, Lin C S. Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary. Arch Ration Mech Anal, 2010, 197(2): 401–432

    MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    Ghoussoub N, Moradifam A. Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, vol 187. Providence, RI: American Mathematical Society, 2013

    Google Scholar 

  20. [20]

    Wang Y, Shen Y. Nonlinear biharmonic equations with Hardy potential and critical parameter. J Math Anal Appl, 2009, 355(2): 649–660

    MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    Khalil A E, Kellati S, Touzani A. On the principal frequency curve of the p-biharmonic operator. Arab Journal of Mathematical Sciences, 2011, 17(2): 89–99

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    Dipierro S, Montoro L, Peral I, et al. Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential. Calc Var Partial Differ Equ, 2016, 55(4): 1–29

    MathSciNet  MATH  Google Scholar 

  24. [24]

    Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case, part 2. Ann Inst H Poincare Anal Non Lineaire, 1984, 2: 223–283

    MATH  Article  Google Scholar 

  25. [25]

    Lions P L. The concentration-compactness principle in the calculus of variations, The limit case, part 1. Rev Mat H Iberoamericano, 1985, 1(1): 145–201

    MATH  Article  Google Scholar 

  26. [26]

    Frank R L, Lieb E H, Seiringer R. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J Amer Math Soc, 2008, 21(4): 925–950

    MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    Lieb E H, Loss M. Analysis, Volume 14 of Graduate Studies in Mathematics. Amer Math Soc, 1997

  28. [28]

    Singh G. Nonlocal pertubations of fractional Choquard equation. http://arxiv.org/pdf/1705.05775

  29. [29]

    Moroz V, Schaftingen J V. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2012, 265(2)

  30. [30]

    Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43: 126–166

    MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231

    MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    Sawano Y. Generalized Morrey Spaces for Non-doubling Measures. Nonlinear Differ Equ Appl, 2008, 15: 413–425

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    Sawyer E, Wheeden R L. Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am J Math, 1992, 114: 813–874

    MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integrals. Trans Amer Math Soc, 1974, 192: 261–274

    MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    Servadei R, Raffaella E. Variational methods for non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33: 2105–2137

    MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    Park Y J. Fractional Polya-Szegö inequality. J Chungcheong Math Soc, 2011, 24(2): 267–271

    Google Scholar 

  37. [37]

    Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gongbao Li.

Additional information

This work was supported by Natural Science Foundation of China (11771166), Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University # IRT17R46.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Yang, T. The Existence of a Nontrivial Weak Solution to a Double Critical Problem Involving a Fractional Laplacian in ℝN with a Hardy Term. Acta Math Sci 40, 1808–1830 (2020). https://doi.org/10.1007/s10473-020-0613-8

Download citation

Key words

  • existence of a weak solution
  • fractional Laplacian
  • double critical exponents
  • Hardy term
  • weighted Morrey space
  • improved Sobolev inequality

2010 MR Subject Classification

  • 35A01
  • 35A23
  • 35B33
  • 35R11
  • 35R70