Skip to main content
Log in

Dynamics on Noncommutative Orlicz Spaces

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Quantum dynamical maps are defined and studied for quantum statistical physics based on Orlicz spaces. This complements earlier work [26] where we made a strong case for the assertion that statistical physics of regular systems should properly be based on the pair of Orlicz spaces 〈Lcosh−1, L log(L + 1)〉, since this framework gives a better description of regular observables, and also allows for a well-defined entropy function. In the present paper we “complete” the picture by addressing the issue of the dynamics of such a system, as described by a Markov semigroup corresponding to some Dirichlet form (see [4, 13, 14]). Specifically, we show that even in the most general non-commutative contexts, completely positive Markov maps satisfying a natural Detailed Balance condition canonically admit an action on a large class of quantum Orlicz spaces. This is achieved by the development of a new interpolation strategy for extending the action of such maps to the appropriate intermediate spaces of the pair (L, L1). As a consequence, we obtain that completely positive quantum Markov dynamics naturally extends to the context proposed in [26].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki H. Relative entropy of states of von Neumann algebras. Publ RIMS, 1976, 11: 809–833

    Article  MathSciNet  Google Scholar 

  2. Araki H. Relative entropy of states of von Neumann algebras II. Publ RIMS, 1977, 13: 173–192

    Article  MathSciNet  Google Scholar 

  3. Bennett C, Sharpley R. Interpolation of Operators. Academic Press Inc, 1988

  4. Cipriani F. Dirichlet forms on noncommutative spaces//Quantum Potential Theory. Lecture Notes in Mathematics 1954. Springer, 2008: 161–276

  5. DiPerna R, Lions P L. On the Fokker-Planck-Boltzmann equation. Commun Math Phys, 1988, 120: 1–23

    Article  MathSciNet  Google Scholar 

  6. DiPerna R, Lions P L. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann Math, 1989, 130: 321–366

    Article  MathSciNet  Google Scholar 

  7. Dodds P G, Dodds T K-Y, de Pagter B. Non-commutative Banach function spaces. Math Z, 1989, 201: 583–597

    Article  MathSciNet  Google Scholar 

  8. Dodds P G, Dodds T K-Y, de Pagter B. Fully symmetric operator spaces. Integral Equations and Operator Theory, 1992, 15: 942–972

    Article  MathSciNet  Google Scholar 

  9. Fack T, Kosaki H. Generalized s-numbers of τ-measurable operators. Pac J Math, 1986, 123: 269–300

    Article  MathSciNet  Google Scholar 

  10. Fagnola F, Umanita V. Generators of KMS symmetric Markov semigroups on B() Symmetry and Quantum Detailed Balance. Commun Math Phys, 2010, 298: 523–547

    Article  MathSciNet  Google Scholar 

  11. Glauber R J. Time-dependent statistics for the Ising model. J Math Physics, 1963, 4: 294–307

    Article  MathSciNet  Google Scholar 

  12. Goldstein S. Conditional expectation and stochastic integrals in non-commutative Lp spaces. Math Proc Camb Phil Soc, 1991, 110: 365–383

    Article  Google Scholar 

  13. Goldstein S, Lindsay J M. KMS-symmetric Markov semigroups. Math Z, 1995, 219: 591–608

    Article  MathSciNet  Google Scholar 

  14. Goldstein S, Lindsay J M. Markov semigroups KMS-symmetric for a weight. Math Ann, 1999, 313: 39–67

    Article  MathSciNet  Google Scholar 

  15. Haagerup U. Operator-valued weights in von Neumann algebras, II. J Funct Anal, 1979, 33: 339–361

    Article  MathSciNet  Google Scholar 

  16. Haagerup U, Junge M, Xu Q. A reduction method for noncommutative Lp-spaces and applications. Trans Amer Math Soc, 2010, 362: 2125–2165

    Article  MathSciNet  Google Scholar 

  17. Johnson W B, Lindenstrauss J, ed. Handbook of the Geometry of Banach Spaces, vol 2. Elsevier Science, 2003

  18. Kadison R V, Ringrose J R. Fundamentals of the Operator Theory, vol II. Advanced Theory. Graduate Studies in Mathematics, vol 16. American Mathematical Society, 1997

  19. Kosaki H. Applications of complex interpolation method to a von Neumann algebra (Non-commutative Lp-spaces). J Funct Anal, 1984, 56: 29–78

    Article  MathSciNet  Google Scholar 

  20. Labuschagne L E. A crossed product approach to Orlicz spaces. Proc London Math Soc, 2013, 107: 965–1003

    Article  MathSciNet  Google Scholar 

  21. Labuschagne L E, Majewski W A. Maps on non-commutative Orlicz spaces. Illinois J Math, 2011, 55: 1053–1081

    Article  MathSciNet  Google Scholar 

  22. Labuschagne L E, Majewski W A. Quantum dynamics on Orlicz spaces. arXiv:1605.01210v1 [math-ph]

  23. Labuschagne L E, Majewski W A. Integral and differential structures for quantum field theory. arXiv:1702.00665 [math-ph]

  24. Majewski W A. The detailed balance condition in quantum statistical mechanics. J Math Phys, 1984, 25: 614–616

    Article  MathSciNet  Google Scholar 

  25. Majewski W A. Dynamical semigroups in the algebraic formulation of statistical mechanics. Fortsch Phys, 1984, 32: 89

    Article  MathSciNet  Google Scholar 

  26. Majewski W A, Labuschagne L E. On applications of Orlicz spaces to Statistical Physics. Ann H Poincare, (2014, 15: 1197–1221

    Article  MathSciNet  Google Scholar 

  27. Majewski W A, Labuschagne L E. Why are Orlicz spaces useful for Statistical Physics?//Daniel Alpay, et al, Eds. Noncommutative Analysis, Operator Theory and Applications. Linear Operators and Linear Systems Vol 252. Birkhauser-Basel, 2016

    Chapter  Google Scholar 

  28. Majewski W A, Labuschagne L E. On Entropy for general quantum systems. Adv Theor Math Phys, to appear (See also arXiv:1804.05579 [math-ph])

  29. Majewski W A, Streater R F. The detailed balance condition and quantum dynamical maps. J Phys A: Math Gen, 1998, 31: 7981–7995

    Article  Google Scholar 

  30. Nelson E. Notes on non-commutative integration. J Funct Anal, 1974, 15: 103

    Article  MathSciNet  Google Scholar 

  31. Paulsen V. Completely Bounded Maps and Operator Algebras. Cambridge University Press, 2002

  32. Pedersen G K, Takesaki M. The Radon-Nikodym theorem for von Neumann algebras. Acta Mathematica, 1973, 130: 53–87

    Article  MathSciNet  Google Scholar 

  33. Pistone G, Sempi C. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. The Annals of Statistics, 1995, 23: 1543–1561

    Article  MathSciNet  Google Scholar 

  34. Rao M M, Ren Z D. Theory of Orlicz Spaces. Marcel Dekker, 1991

  35. Schmitt L. The Radon-Nikodym theorem for Lp-spaces of W* algebras. Publ Res Inst Math Sci Kyoto, 1986, 22: 1025–1034

    Article  MathSciNet  Google Scholar 

  36. Segal I E. A non-commutative extension of abstract integration. Ann Math, 1953, 57: 401

    Article  MathSciNet  Google Scholar 

  37. Takesaki M. Theory of Operator Algebras, vol I. Springer, 1979

  38. Takesaki M. Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math, 1973, 131: 249–308

    Article  MathSciNet  Google Scholar 

  39. Terp M. Lp spaces associated with von Neumann algebras. Københavs Universitet, Mathematisk Institut, Rapport No 3a, 1981

  40. Tolman R C. Foundation of Statistical Mechanics. Oxford, 1938

  41. Van Daele A. Continuous crossed products and type III von Neumann algebras. Cambridge University Press, 1978

  42. Villani C. A review of mathematical topics in collisional kinetic theory//Handbook of Mathematical Fluid Dynamics, Vol I. Amsterdam: North-Holland, 2002: 71–305

    Chapter  Google Scholar 

  43. Yeadon F J. Ergodic theorems for semifinite von Neumann algebras I. J London Math Soc, 1977, 16: 326–332

    Article  MathSciNet  Google Scholar 

  44. Zippin M. Interpolation of operators of weak type between rearrangement invariant Banach function spaces. J Funct Anal, 1971, 7: 267–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Labuschagne.

Additional information

The contribution of L. E. Labuschagne is based on research partially supported by the National Research Foundation (IPRR Grant 96128). Any opinion, findings and conclusions or recommendations expressed in this material, are those of the author, and therefore the NRF do not accept any liability in regard thereto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labuschagne, L.E., Majewski, W.A. Dynamics on Noncommutative Orlicz Spaces. Acta Math Sci 40, 1249–1270 (2020). https://doi.org/10.1007/s10473-020-0507-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0507-9

Key words

2010 MR Subject Classification

Navigation