Skip to main content
Log in

Asymptotic Stability of a Viscous Contact Wave for the One-Dimensional Compressible Navier-Stokes Equations for a Reacting Mixture

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture. When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave, it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable, provided the strength of contact discontinuity and the initial perturbation are suitably small. We apply the approach introduced in Huang, Li and Matsumura (2010) [1] and the elementary L2-energy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimenional compressible Navier-Stokes system. Archive for Rational Mechanics and Analysis, 2010, 197: 89–116

    MathSciNet  MATH  Google Scholar 

  2. Ducomet B, Zlotnik A. On the large-time behavior of 1D radiative and reactive viscous flows for higher-order kinetics. Nonlinear Analysis, 2005, 63(8): 1011–1033

    MathSciNet  MATH  Google Scholar 

  3. Smoller J. Shock Waves and Reaction-Diffusion Equations. 2nd ed. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  4. Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Archive for Rational Mechanics and Analysis, 2006, 179: 55–77

    MathSciNet  MATH  Google Scholar 

  5. Hsiao L, Liu T P. Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chinese Annals of Mathematics, Series A, 1993, 14: 465–480

    MathSciNet  MATH  Google Scholar 

  6. Duyn C J, Peletier L A. A class of similarity solutions of the nonlinear diffusion equation. Nonlinear Analysis, 1977, 1: 223–233

    MathSciNet  MATH  Google Scholar 

  7. Xin Z P. On nonlinear stability of contact discontinuities//Hyperbolic Problems: Theory, Numerics, Applications. River Edge: World Scientific, 1996: 249–257

    Google Scholar 

  8. Liu T P, Xin Z P. Pointwise decay to contact discontinuities for systems of viscous conservation laws. The Asian Journal of Mathematics, 1997, 1: 34–84

    MathSciNet  MATH  Google Scholar 

  9. Xin Z P, Zeng H H. Pointwise stability of contact discontinuity for viscous conservation laws with general perturbations. Communications in Partial Differential Equations, 2010, 35: 1326–1354

    MathSciNet  MATH  Google Scholar 

  10. Huang F M, Matsumura A, Shi X D. On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka Journal of Mathematics, 2004, 41: 193–210

    MathSciNet  MATH  Google Scholar 

  11. Chen Z Z, Xiao Q H. Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type. Mathematical Methods in the Applied Sciences, 2013, 36: 2265–2279

    MathSciNet  MATH  Google Scholar 

  12. Huang B K, Liao Y K. Global stability of viscous contact wave with rarefaction waves for compressible Navier-Stokes equations with temperature-dependent viscosity. Mathematical Models and Methods in Applied Sciences, 2017, 27: 2321–2379

    MathSciNet  MATH  Google Scholar 

  13. Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana University Mathematics Journal, 2016, 65(6): 1833–1875

    MathSciNet  MATH  Google Scholar 

  14. Huang F M, Xin Z P, Yang T. Contact discontinuity with general perturbation for gas motions. Advances in Mathematics, 2008, 219: 1246–1297

    MathSciNet  MATH  Google Scholar 

  15. Huang F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rendiconti del Seminario Matematico della Università di Padova, 2003, 109: 283–305

    MathSciNet  MATH  Google Scholar 

  16. Wan L, Wang T, Zhao H J. Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half-space. Journal of Differential Equations, 2016, 261: 5949–5991

    MathSciNet  MATH  Google Scholar 

  17. Huang F M, Wang Y, Zhai X Y. Stability of viscous contact wave for compressible Navier-Stokes system of general gas with free boundary. Acta Mathematica Scientia, 2010, 30B(6): 1906–1919

    MathSciNet  MATH  Google Scholar 

  18. Zeng H H. Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws. Journal of Differential Equations, 2009, 246: 2081–2102

    MathSciNet  MATH  Google Scholar 

  19. Hong H. Global stability of viscous contact wave for 1-D compressible Navier-Stokes equations. Journal of Differential Equations, 2012, 252: 3482–3505

    MathSciNet  MATH  Google Scholar 

  20. Duan R J, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Transactions of the American Mathematical Society, 2009, 361(1): 453–493

    MathSciNet  MATH  Google Scholar 

  21. Fan L L, Liu H X, Wang T, et al. Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation. Journal of Differential Equations, 2014, 257: 3521–3553

    MathSciNet  MATH  Google Scholar 

  22. Liu H X, Yang T, Zhao H J, et al. One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data. SIAM Journal on Mathematical Analysis, 2014, 46: 2185–2228

    MathSciNet  MATH  Google Scholar 

  23. Liao Y K, Zhao H J. Global solutions to one-dimensional equations for a self-gravitating viscous radiative and reactive gas with density-dependent viscosity. Communications in Mathematical Science, 2017, 15(5): 1423–1456

    MathSciNet  MATH  Google Scholar 

  24. Ducomet B. A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas. Mathematical Methods in the Applied Sciences, 1999, 22(15): 1323–1349

    MathSciNet  MATH  Google Scholar 

  25. Jiang J, Zheng S. Global well-posedness and exponential stability of solutions for the viscous radiative and reactive gas. Zeitschrift fur Angewandte Mathematik und Physik, 2014, 65(4): 645–686

    MathSciNet  MATH  Google Scholar 

  26. Jiang J, Zheng S. Global solvability and asymptotic behavior of a free boundary problem for the one-dimensional viscous radiative and reactive gas. Journal of Mathematical Physics, 2012, 53(12): 123704

    MathSciNet  MATH  Google Scholar 

  27. Qin Y, Hu G, Wang T. Global smooth solutions for the compressible viscous and heat-conductive gas. Quarterly of Applied Mathematics, 2011, 69(3): 509–528

    MathSciNet  MATH  Google Scholar 

  28. Umehara M, Tani A. Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas. Journal of Differential Equations, 2007, 234(2): 439–463

    MathSciNet  MATH  Google Scholar 

  29. Umehara M, Tani A. Global solvability of the free-boundary problem for one-dimensional motion of a self gravitating viscous radiative and reactive gas. Proceedings of the Japan Academy, Ser. A, Mathematical Sciences, 2008, 84(7): 123–128

    MathSciNet  MATH  Google Scholar 

  30. Ducomet B, Zlotnik A. Lyapunov functional method for 1D radiative and reactive viscous gas dynamics. Archive for Rational Mechanics and Analysis, 2005, 177(2): 185–229

    MathSciNet  MATH  Google Scholar 

  31. Liao Y K, Zhao H J. Global existence and large-time behavior of solutions to the Cauchy problem of one-dimensional viscous radiative and reactive gas. Journal of Differential Equations, 2018, 265: 2076–2120

    MathSciNet  MATH  Google Scholar 

  32. Donatelli D, Trivisa K. On the motion of a viscous compressible radiative-reacting gas. Communications in Mathematical Physics, 2006, 265(2): 463–491

    MathSciNet  MATH  Google Scholar 

  33. Zhang J. Remarks on global existence and exponential stability of solutions for the viscous radiative and reactive gas with large initial data. Nonlinearity, 2017, 30(4): 1221–1261

    MathSciNet  MATH  Google Scholar 

  34. Qin Y, Zhang J, Su X, et al. Global existence and exponential stability of spherically symmetric solutions to a compressible combustion radiative and reactive gas. Journal of Mathematical Fluid Mechanics, 2016, 18(3): 415–461

    MathSciNet  MATH  Google Scholar 

  35. Umehara M, Tani A. Temporally global solution to the equations for a spherically symmetric viscous radiative and reactive gas over the rigid core. Analysis and Applications, 2008, 6(2): 183–211

    MathSciNet  MATH  Google Scholar 

  36. Liao Y K, Wang T, Zhao H J. Global spherically symmetric flows for a viscous radiative and reactive gas in an exterior domain. Journal of Differential Equations, 2019, 266: 6459–6506

    MathSciNet  MATH  Google Scholar 

  37. Williams F A. Combustion Theory. Reading, MA: Addison-Wesley, 1965

    Google Scholar 

  38. Chen G Q. Global solutions to the compressible Navier-Stokes equations for a reacting mixture. SIAM Journal on Mathematical Analysis, 1992, 23: 609–634

    MathSciNet  MATH  Google Scholar 

  39. Chen G Q, Hoff D, Trivisa K. On the Navier-Stokes equations for exothermically reacting compressible fluids. Acta Mathematicae Applicatae Sinica English Series, 2002, 18(1): 15–36

    MathSciNet  MATH  Google Scholar 

  40. Chen G Q, Hoff D, Trivisa K. Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Archive for Rational Mechanics and Analysis, 2003, 166(4): 321–358

    MathSciNet  MATH  Google Scholar 

  41. Li S R. On one-dimensional compressible Navier-Stokes equations for a reacting mixture in unbounded domains. Zeitschrift fur Angewandte Mathematik und Physik, 2017, 68(5): 106

    MathSciNet  MATH  Google Scholar 

  42. Xu Z, Feng Z F. Nonlinear stability of rarefaction waves for one-dimensional compressible Navier-Stokes equations for a reacting mixture. Zeitschrift fur Angewandte Mathematik und Physik, 2019, 70: 155

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Associate Professor Wenjun Wang for his valuable suggestions, and for many fruitful discussions on the topic of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishuang Peng.

Additional information

This work was supported by the National Natural Science Foundation of China (11871341).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L. Asymptotic Stability of a Viscous Contact Wave for the One-Dimensional Compressible Navier-Stokes Equations for a Reacting Mixture. Acta Math Sci 40, 1195–1214 (2020). https://doi.org/10.1007/s10473-020-0503-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0503-0

Key words

2010 MR Subject Classification

Navigation