Skip to main content

Advertisement

Log in

Single projection algorithm for variational inequalities in Banach spaces with application to contact problem

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space. The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous. A weak convergence result is obtained under reasonable assumptions on the variable step-sizes. We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous. For this strong convergence case, the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters, rather, the variable step-sizes are diminishing and non-summable. The asymptotic estimate of the convergence rate for the strong convergence case is also given. For completeness, we give another strong convergence result using the idea of Halpern’s iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function. Finally, we give an example of a contact problem where our proposed method can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber Y I. Metric and generalized projection operator in Banach spaces: properties and applications//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. 178 of Lecture Notes in Pure and Applied Mathematics. New York, NY: Dekker, 1996: 15–50

    Google Scholar 

  2. Alber Y I. Recurrence relations and variational inequalities. Soviet Math Dokl, 1983, 27: 511–517

    Google Scholar 

  3. Alber Y I, Notik A I. On the iterative method for variational inequalities with nonsmooth unbounded operators in Banach spaces. J Math Anal Appl, 1994, 188: 928–939

    Article  MathSciNet  Google Scholar 

  4. Alber Y, Ryazantseva I. Nonlinear Ill-posed Problems of Monotone Type. Dordrecht: Springer, 2006

    MATH  Google Scholar 

  5. Al-Mazrooei A E, Bin Dehaish B A, Latif A, Yao J C. On general system of variational inequalities in Banach spaces. J Nonlinear Convex Anal, 2015, 16(4): 639–658

    MathSciNet  MATH  Google Scholar 

  6. Aoyama K, Kohsaka F. Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings. Fixed Point Theory Appl, 2014, 2014: 95, 13 pp

  7. Aubin J -P, Ekeland I. Applied Nonlinear Analysis. New York: Wiley, 1984

    MATH  Google Scholar 

  8. Avetisyan K, Djordjevic O, Pavlovic M. Littlewood-Paley inequalities in uniformly convex and uniformly smooth Banach spaces. J Math Anal Appl, 2007, 336: 31–43

    Article  MathSciNet  Google Scholar 

  9. Baiocchi C, Capelo A. Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. New York: Wiley, 1984

    MATH  Google Scholar 

  10. Ball K, Carlen E A, Lieb E H. Sharp uniform convexity and smoothness inequalities for trace norms. Invent Math, 1994, 115: 463–482

    Article  MathSciNet  Google Scholar 

  11. Beauzamy B. Introduction to Banach Spaces and Their Geometry. Amsterdam: North-Holland, 1985

    MATH  Google Scholar 

  12. Cai G, Bu S. Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces. J Global Optim, 2013, 55(2): 437–457

    Article  MathSciNet  Google Scholar 

  13. Cai G, Gibali A, Iyiola O S, Shehu Y. A new double-projection method for solving variational inequalities in Banach spaces. J Optim Theory Appl, 2018, 178: 219–239

    Article  MathSciNet  Google Scholar 

  14. Censor Y, Gibali A, Reich S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Methods Softw, 2011, 26: 827–845

    Article  MathSciNet  Google Scholar 

  15. Censor Y, Gibali A, Reich S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148: 318–335

    Article  MathSciNet  Google Scholar 

  16. Censor Y, Gibali A, Reich S. Extensions of Korpelevich’s extragradient method for solving the variational inequality problem in Euclidean space. Optimization, 2012, 61: 1119–1132

    Article  MathSciNet  Google Scholar 

  17. Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht: Kluwer Academic Publishers, 1990

    Book  Google Scholar 

  18. Diestel J. The geometry of Banach spaces//Lecture Notes Math, 485. Springer, 1975

  19. Facchinei F, Pang J -S. Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume II. Springer Series in Operations Research. New York: Springer, 2003

    MATH  Google Scholar 

  20. Figiel T. On the moduli of convexity and smoothness. Studia Mathematics, 1976, 56: 121–155

    Article  MathSciNet  Google Scholar 

  21. Glowinski R, Lions J -L, Tremolieres R. Numerical Analysis of Variational Inequalities. Amsterdam: North-Holland, 1981

    MATH  Google Scholar 

  22. Iiduka H, Takahashi W. Weak convergence of a projection algorithm for variational inequalities in a Banach space. J Math Anal Appl, 2008, 339: 668–679

    Article  MathSciNet  Google Scholar 

  23. Iusem A N, Nasri M. Korpelevich’s method for variational inequality problems in Banach spaces. J Global Optim, 2011, 50: 59–76

    Article  MathSciNet  Google Scholar 

  24. Jouymandi Z, Moradlou F. Extragradient methods for solving equilibrium problems, variational inequalities, and fixed point problems. Numer Funct Anal Optim, 2017, 38: 1391–1409

    Article  MathSciNet  Google Scholar 

  25. Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim, 2002, 13: 938–945

    Article  MathSciNet  Google Scholar 

  26. Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980

    MATH  Google Scholar 

  27. Konnov I V. Combined Relaxation Methods for Variational Inequalities. Berlin: Springer-Verlag, 2001

    Book  Google Scholar 

  28. Korpelevich G M. The extragradient method for finding saddle points and other problems. Ékon Mat Metody, 1976, 12: 747–756

    MathSciNet  MATH  Google Scholar 

  29. Li L, Song W. A modified extragradient method for inverse-monotone operators in Banach spaces. J Global Optim, 2009, 44(4): 609–629

    Article  MathSciNet  Google Scholar 

  30. Maingé P -E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal, 2008, 16: 899–912

    Article  MathSciNet  Google Scholar 

  31. Mashreghi J, Nasri M. Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory. Nonlinear Anal, 2010, 72: 2086–2099

    Article  MathSciNet  Google Scholar 

  32. Reich S. A weak convergence theorem for the alternating method with Bregman distances//Kartsatos A G, ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes Pure Appl Math, vol 178. New York: Dekker, 1996: 313–318

    Google Scholar 

  33. Shehu Y. Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results Math, 2019, 74(4): Art 138, 24 pp

  34. Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000

    MATH  Google Scholar 

  35. Thong D V, Hieu D V. Weak and strong convergence theorems for variational inequality problems. Numer Algor, 2018, 78(4): 1045–1060

    Article  MathSciNet  Google Scholar 

  36. Tseng P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim, 2000, 38: 431–446

    Article  MathSciNet  Google Scholar 

  37. Xu H K. Inequalities in Banach spaces with applications. Nonlinear Anal, 1991, 16: 1127–1138

    Article  MathSciNet  Google Scholar 

  38. Xu H K. Iterative algorithms for nonlinear operators. J London Math Soc, 2002, 66: 240–256

    Article  MathSciNet  Google Scholar 

  39. Yao Y, Aslam Noor M, Inayat Noor K, Liou Y -C, Yaqoob H. Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl Math, 2010, 110(3): 1211–1224

    Article  MathSciNet  Google Scholar 

  40. Zegeye H, Shahzad N. Extragradient method for solutions of variational inequality problems in Banach spaces. Abstr Appl Anal, 2013, 2013: Art ID 832548, 8 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y. Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math Sci 40, 1045–1063 (2020). https://doi.org/10.1007/s10473-020-0412-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0412-2

Key words

2010 MR Subject Classification

Navigation