Skip to main content
Log in

Algebraic differential independence concerning the Euler Γ-function and Dirichlet series

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class \({\mathbb F}\) which contains Dirichlet -functions, -functions in the extended Selberg class, or some periodic functions. We prove that the Euler Γ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions ϕ with ρ(ϕ) < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank S, Kaufman R. An extension of Hölders theorem concerning the Gamma function. Funkcial Ekvac, 1976, 19: 53–63

    MathSciNet  MATH  Google Scholar 

  2. Cimpoea M, Nicolae F. Independence of Artin L-functions. Forum Mathematicum, 2019, 31(2):529–534

    Article  MathSciNet  Google Scholar 

  3. Chiang Y M, Feng S J. Difference independence of the Riemann zeta function. Acta Arithmetica, 2006, 125(4):317–329

    Article  MathSciNet  Google Scholar 

  4. Gross F, Osgood C F. A generalization of the nielson-holder theorem about Γ(z). Complex Variables Theory and Application: An International Journal, 1998, 37: 243–250

    Article  MathSciNet  Google Scholar 

  5. Han Q, Liu J B, Wang Q Y, et al. algebraic differential independence regarding the Euler Γ function and the riemann ζ function. arXIV:1811.04188v1

  6. Han Q, Liu J B. On differrntial independence of ζ and Γ. arXIV:1811.09336v2

  7. Hausdorff F. Zum Hölde z über ζ(z). Math Ann, 1925, 94: 244–247

    Article  MathSciNet  Google Scholar 

  8. Hilbert D. Mathematische probleme. Arch Math Phys, 1901, 63(44):213–317

    MATH  Google Scholar 

  9. Hilbert D. Mathematical problems. Bull Amer Math Soc (NS), 2000, 37(4):407–436

    Article  MathSciNet  Google Scholar 

  10. Hölder O. Über die Eigenschaft der Γ-Function, keiner algebraischen Differentialgleichung zu genügen. Math Ann, 1887, 28: 1–13

    Article  Google Scholar 

  11. Karatsuba A A, Voronin S M. The Riemann Zeta Function. Berlin: Walter de Gruyter, 1992

    Book  Google Scholar 

  12. Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: Walter de Gruyter, 1993

    Book  Google Scholar 

  13. Li B Q, Ye Z. Algebraic differential equations with functional coefficients concerning ζ and Γ. J Differential Equations, 2016, 260: 1456–1464

    Article  MathSciNet  Google Scholar 

  14. Li B Q, Ye Z. On differential independence of the Riemann zetafunction and the Eulergamma function. Acta Arith, 2008, 135(4):333–337

    Article  MathSciNet  Google Scholar 

  15. Li B Q, Ye Z. Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function. Indiana Univ Math J, 2010, 59: 1405–1415

    Article  MathSciNet  Google Scholar 

  16. Li B Q, Ye Z. On algebraic differential properties of the Riemann ζ-function and the Euler Γ-function. Complex Var Elliptic Equ, 2011, 56: 137–145

    Article  MathSciNet  Google Scholar 

  17. Liao L W, Yang C C. On some new properties of the gamma function and the Riemann zeta function. Math Nachr, 2003, 257: 59–66

    Article  MathSciNet  Google Scholar 

  18. Lü F. A study on algebraic differential equationd of gamma function and dirichlet series. J Math Anal Appl, 2018, 462(2): 1195–1204

    Article  MathSciNet  Google Scholar 

  19. Lü F. On algebraic differential equations for the gamma function and L-functions in the extendeded selberg class. Bulletin of the Australian Mathematical Society, 2017, 96: 36–43

    Article  MathSciNet  Google Scholar 

  20. Markus L. Differential independence of Γ and ζ. J Dynam Differential Equations, 2007, 19: 133–154

    Article  MathSciNet  Google Scholar 

  21. Mijajlovic Z, Malesevic B. Differentially transcendental functions. Bull Belg Math Soc Simon Stevin, 2008, 15: 193–201

    Article  MathSciNet  Google Scholar 

  22. Boltovskoi D M. On hypertranscendence of the function ξ(x, s). Izv Politekh Inst Warsaw, 1914, 2: 1–16

    Google Scholar 

  23. Moore E. Concerning transcendentally transcendental functions. Math Ann, 1897, 48: 49–74

    Article  MathSciNet  Google Scholar 

  24. Nevanlinna R. Analytic Functions. Berlin: Springer, 1970

    Book  Google Scholar 

  25. Ostrowski A. Über Dirichletsche Reihen und algebraische Differentialgleichungen. Math Z, 1920, 8: 241–298

    Article  MathSciNet  Google Scholar 

  26. Ostrowski A. Neuer Beweis des Hölderschen Satzes, daβ die Gammafunktion keiner algebraischen Differentialgleichung genuügt. Mathematische Annalen, 1918, 79: 286–288

    Article  MathSciNet  Google Scholar 

  27. Ostrowski A. Zum Hölderschen Satz über Γ(z). Math Annalen, 1925, 94: 248–251

    Article  MathSciNet  Google Scholar 

  28. Stadigh V E E. Ein Satz über Funktionen, die algebraische Differentialgleichungen befriedigen, und ber die Eigenschaft der Funktion ζ(s) keiner solchen Gleichung zu genügen. Diss Frenckell Dr, 1902

  29. Steuding J. Value Distribution of L-Functions. Berlin: Springer-Verlag, 2007

    MATH  Google Scholar 

  30. Titchmarsh E. The Theory of Functions. 2nd ed. Oxford Univ Press, 1968

  31. Voronin S M. On the functional independence of Dirichlet L-functions. Acta Arith, 1975, 27: 493–503

    Article  MathSciNet  Google Scholar 

  32. Voronin S M. On differential independence of ζ functions. Soviet Math Dokl, 1973, 14: 607–609

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Additional information

This work of both authors was partially supported by Basic and Advanced Research Project of CQ CSTC (cstc2019jcyj-msxmX0107), and Fundamental Research Funds of Chongqing University of Posts and Telecommunications (CQUPT: A2018-125).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Q. Algebraic differential independence concerning the Euler Γ-function and Dirichlet series. Acta Math Sci 40, 1035–1044 (2020). https://doi.org/10.1007/s10473-020-0411-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0411-3

Key words

2010 MR Subject Classification

Navigation