Skip to main content
Log in

On Fixed Points of Meromorphic Functions f(z) and f(z + c), Δcf(z)

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript


Let c be a nonzero constant and f(z) be a transcendental meromorphic function of finite order. Under some conditions, we study the relationships between the exponent of convergence of fixed points of f(z), its shift f(z + c) and forward differences Δ n c f(z), n ∈ ℕ+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ablowitz M, Halburd R G, Herbst B. On the extension of Painlevé property to difference equations. Nonlinearty, 2000, 13): 889–905

    Google Scholar 

  2. Bergweiier W, Langley J K. Zeros of differences of meromorphic functions. Math Proc Camb Phil Soc, 2007, 142): 133–147

    Article  Google Scholar 

  3. Bergweiier W, Pang X C. On the derivative of meromorphic function with multiple zeros. J Math Anal Appl, 2003, 278): 285–292

    Google Scholar 

  4. Chen Z X. Fixed points of meromorphic functions and their differences, shifts. Annales Polonici Math, 2013, 109 (2): 153–163

    Google Scholar 

  5. Chen Z X, Shon K H. On existence of solutions of difference Riccati equation. Acta Math Sci, 2019, 39B (1): 1–9

    Google Scholar 

  6. Chen Z X, Shon K H. On zeros and fixed points of differences of meromorphic functions. J Math Anal Appl, 2008, 344): 373–383

    Google Scholar 

  7. Chen Z X, Shon K H. Properties of differnces of meromorphic functions. Czechoslovak Math J, 2011, 61 (136): 213–224

    Google Scholar 

  8. Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J, 2008, 16): 105–129

    Google Scholar 

  9. Halburd R G, Korhonen R J. Difference analogue of the lemma on the logarithmic derivative with applica-tions to difference equations. J Math Anal Appl, 2006, 314): 477–487

    Google Scholar 

  10. Halburd R G, Korhonen R J. Meromorphic solution of difference equation, integrability and the discrete Painlevé equations. J Phys A: Math Theor, 2007, 40): 1–38

    Google Scholar 

  11. Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964

    Google Scholar 

  12. Heittokangas J, Korhonen R, Laine I, et al. Value sharing results for shifts of meromorphic functions, and suffcient conditions for periodicity. J Math Anal Appl, 2009, 355): 352–363

    Google Scholar 

  13. Ishizaki K. On difference Riccati equations and second order linear difference equations. Aequat Math, 2011, 81): 185–198

    Google Scholar 

  14. Laine I, Yang C C. Clunie theorems for difference and q-difference polynomials. J Lond Math Soc, 2007, 76 (3): 556–566

    MATH  Google Scholar 

  15. Lan S T, Chen Z X. Properties of difference Painlevé IV equations. Acta Math Sci, 2017, 37B (6): 1830–1840

    MATH  Google Scholar 

  16. Yang L. Value Distribution Theory and Its New Research (in Chinese). Beijing: Science Press, 1982

    Google Scholar 

  17. Zhang R R, Chen Z X. On meromorphic solutions of Riccati and linear difference equations. Acta Math Sci, 2013, 33B (5): 1243–1254

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zongxuan Chen.

Additional information

The project was supported by the Natural Science Foundation of Guangdong Province in China (2016A030310106), the National Natural Science Foundation of China (11801110, 11771090, 11761035, 11871260), the Foundation of Guangzhou Civil Aviation College (17X0419).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, S., Chen, Z. On Fixed Points of Meromorphic Functions f(z) and f(z + c), Δcf(z). Acta Math Sci 39, 1277–1289 (2019).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words

2010 MR Subject Classification