Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1185–1194 | Cite as

A Note on Li-Yau-Type Gradient Estimate

  • Chengjie Yu (余成杰)Email author
  • Feifei Zhao (赵菲菲)Email author


In this article, we obtain Li-Yau-type gradient estimates with time dependent parameter for positive solutions of the heat equation that are different with the estimates by Li-Xu [21] and Qian [23]. As an application of the estimate, we also obtained slight improvements of Davies’ Li-Yau-type gradient estimate.

Key words

Heat equation Li-Yau-type gradient estimate heat kernel 

2010 MR Subject Classification

35K05 53C44 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Li P, Yau S T. On the parabolic kernel of the Schr odinger operator. Acta Math, 1986, 156(3/4): 153–201MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bakry D, Qian Z M. Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev Mat Iberoamericana, 1999, 15(1): 143–179MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bakry D, Ledoux M. A logarithmic Sobolev form of the Li-Yau parbolic inequality. Rev Mat Iberoam, 2006, 22(2): 683–702MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Cao X, Fayyazuddin L B, Liu B. Differential Harnack estimates for a nonlinear heat equation. J Funct Anal, 2013, 265(10): 2312–2330MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Yau S T. On the Harnack inequalities of partial differential equations. Comm Anal Geom, 1994, 2(3): 431–450MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Yau S T. Harnack inequality for non-self-adjoint evolution equations. Math Res Lett, 1995, 2(4): 387–399MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Zhang H -C, Zhu X -P. Local Li-Yau’s estimates on RCD * (K, N) metric measure spaces. Calc Var Partial Differential Equations, 2016, 55(4): Paper No. 93, 30 ppGoogle Scholar
  8. [8]
    Carron G. Geometric inequalities for manifolds with Ricci curvature in the Kato class. arXiv:1612.03027Google Scholar
  9. [9]
    Rose C. Li-Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class. arXiv:1608.04221Google Scholar
  10. [10]
    Zhang Qi S, Zhu M. Li-Yau gradient bounds under nearly optimal curvature conditions.
  11. [11]
    Zhang Qi S, Zhu M. Li-Yau gradient bound for collapsing manifolds under integral curvature condition. Proc Amer Math Soc, 2017, 145(7): 3117–3126MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Hamilton Richard S. A matrix Harnack estimate for the heat equation. Comm Anal Geom, 1993, 1(1): 113–126MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Cao H-D, Ni L. Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds. Math Ann, 2005, 331(4): 795–807MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Hamilton Richard S. The Harnack estimate for the Ricci flow. J Differential Geom, 1993, 37(1): 225–243MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Cao H-D. On Harnack’s inequalities for the Kähler-Ricci flow. Invent Math, 1992, 109(2): 247–263MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Ni L, Niu Y. Sharp differential estimates of Li-Yau-Hamilton type for positive (p, p)-forms on Kähler manifolds. Comm Pure Appl Math, 2011, 64(7): 920–974MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Chow B, Hamilton Richard S. Constrained and linear Harnack inequalities for parabolic equations. Invent Math, 1997, 129(2): 213–238MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Ren X-A, Yao S, Shen L-J, Zhang G-Y. Constrained matrix Li-Yau-Hamilton estimates on Kähler manifolds. Math Ann, 2015, 361(3/4): 927–941MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159Google Scholar
  20. [20]
    Davies E B. Heat kernels and spectral theory. Cambridge: Cambridge University Press, 1990Google Scholar
  21. [21]
    Li J, Xu X. Differential Harnack inequalities on Riemannian manifolds I: linear heat equation. Adv Math, 2011, 226(5): 4456–4491MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Bakry D, Bolley F, Gentil I. The Li-Yau inequality and applications under a curvature-dimension condition. Ann Inst Fourier (Grenoble), 2017, 67(1): 397–421MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Qian B. Remarks on differential Harnack inequalities. J Math Anal Appl, 2014, 409(1): 556–566MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsShantou UniversityShantouChina

Personalised recommendations