Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1173–1184 | Cite as

Value Distribution of Meromorphic Solutions of Certain Non-Linear Difference Equations

  • Minfeng Chen (陈敏风)Email author
  • Zongsheng Gao (高宗升)
  • Jilong Zhang (张继龙)


In this article, we consider the non-linear difference equation
$$(f(z + 1)f(z) - 1)(f(z)f(z - 1) - 1) = {{P(z,f(z))} \over {Q(z,f(z))}},$$
where P(z, f (z)) and Q(z,f (z)) are relatively prime polynomials in f (z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f (z), and the exponents of convergence of poles of difference Δf (z) and divided difference \({{{\rm{\Delta }}\;f(z)} \over {f(z)}}\) are estimated. Furthermore, we study the forms of rational solutions of the above equation.

Key words

Non-linear difference equation meromorphic solution rational solution value distribution 

2010 MR Subject Classification

30D35 34M05 39B32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ablowitz M J, Halburd R, Herbst B. On the extension of the Painlevé property to difference equations. Nonlinearity, 2000, 13: 889–905MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bergweiler W, Langley J K. Zeros of differences of meromorphic functions. Math Proc Camb Phil Soc, 2007, 142: 133–147MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Chen Z X. On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations. Sci China Math, 2011, 54: 2123–2133MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Chen Z X. Complex Differences and Difference Equations. Beijing: Science Press, 2014CrossRefzbMATHGoogle Scholar
  5. [5]
    Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J, 2008, 16: 105–129MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Du Y F, Chen M F, Gao Z S. On value distribution of meromorphic solutions of a certain second order difference equations. J Comput Anal Appl, 2018, 25: 1025–1035MathSciNetGoogle Scholar
  7. [7]
    Grammaticos B, Tamizhmani T, Ramani A, Tamizhmani K M. Growth and integrability in discrete systems. J Phy A: Math Gen, 2001, 34: 3811–3821MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Hayman W K. Slowly growing integral and subharmonic functions. Comment Math Helv, 1960, 34: 75–84MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hayman W K. Meromorphic Function. Oxford: Clarendon Press, 1964zbMATHGoogle Scholar
  10. [10]
    Halburd R G, Korhonen R J. Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations. J Math Anal Appl, 2006, 314: 477–487MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: W de Gruyter, 1993CrossRefzbMATHGoogle Scholar
  12. [12]
    Laine I, Yang C C. Clunie theorems for difference and q-difference polynomials. J Lond Math Soc, 2007, 76: 556–566MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Li S, Gao Z S. Finite order meromorphic solutions of linear difference equations. Proc Japan Acad Ser A: Math Sci, 2011, 87: 73–76MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Peng C W, Chen Z X. Properties of meromorphic solutions of some certain difference equations. Kodai Math J, 2014, 37: 97–119MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Whillaker J M. Interpolatory Funtion Theory, Cambridge Tracts in Mathematics and Mathematical Physics. No 33. Cambridge: Cambridge University Press, 1935Google Scholar
  16. [16]
    Yang L. Value Distribution Theory. Berlin: Springer-Verlag, 1993zbMATHGoogle Scholar
  17. [17]
    Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995; Dordrecht: Kluwer Academic, 2003Google Scholar
  18. [18]
    Zhang J L. Some results on difference Painlevé IV equations. J Differ Equ Appl, 2016, 22: 1912–1929CrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  • Minfeng Chen (陈敏风)
    • 1
    • 2
    Email author
  • Zongsheng Gao (高宗升)
    • 2
  • Jilong Zhang (张继龙)
    • 2
  1. 1.School of Mathematics and StatisticsGuangdong University of Foreign StudiesGuangzhouChina
  2. 2.LMIB and School of Mathematics and Systems ScienceBeihang UniversityBeijingChina

Personalised recommendations