Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1149–1162 | Cite as

Quantitative Weighted Bounds for a Class of Singular Integral Operators

  • Wenhua Gao (高文华)
  • Guoen Hu (胡国恩)Email author


In this article, the authors consider the weighted bounds for the singular integral operator defined by
$${T_A}f(x) = {\rm{p}}.{\rm{v}}.\int_{\mathbb{R}^{n}} {{{{\rm{\Omega }}(x - y)} \over {{\rm{|}}x - y{{\rm{|}}^{n + 1}}}}\left( {A(x) - A(y) - \nabla A(y)} \right)f(y){\rm{d}}y} ,$$
where Ω is homogeneous of degree zero and has vanishing moment of order one, and A is a function on ℝn such that ▽A ∈ BMO(ℝn). By sparse domination, the authors obtain some quantitative weighted bounds for Ta when Ω satisfies regularity condition of Lr-Dini type for some r ∈ (1, ∞).

Key words

Singular integral operator sparse domination Ap constant maximal operator 

2010 MR Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Buckley S M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans Amer Math Soc, 1993, 340: 253–272MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Cohen J. A sharp estimate for a multilinear singular integral on ℝn. Indiana Univ Math J, 1981, 30: 693–702MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Damián W, Hormozi M, Li K. New bounds for bilinear Calderón-Zygmund operators and applications. arxiv:1512.02400Google Scholar
  4. [4]
    Grafakos L. Modern Fourier Analysis. GTM 250. 2nd Edition. New York: Springer, 2008zbMATHGoogle Scholar
  5. [5]
    Hofmann S. On certain non-standard Calderon-Zygmund operators. Studia Math, 1994, 109: 105–131MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Hu G. Weighted vector-valued estimates for a non-standard Calderon-Zygmund operator. Nonlinear Anal, 2017, 165: 143–162MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Hu G, Li D. A Cotlar type inequality for the multilinear singular integral operators and its applications. J Math Anal Appl, 2004, 290: 639–653MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Hu G, Yang D. Sharp function estimates and weighted norm inequalities for multilinear singular integral operators. Bull London Math Soc, 2003, 35: 759–769MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hytonen T. The sharp weighted bound for general Calderon-Zygmund operators. Ann Math, 2012, 175: 1473–1506MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Hytönen T, Lacey M, Pérez C. Sharp weighted bounds for the q-variation of singular integrals. Bull London Math Soc, 2013, 45: 529–540MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Hytonen T, Perez C. Sharp weighted bounds involving A∞. Anal PDE, 2013, 6: 777–818MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Hytönen T, Pérez C. The L(log L) endpoint estimate for maximal singular integral operators. J Math Anal Appl, 2015, 428: 605–626MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Lacey M, Li K. On A pA type estimates for square functions. Math Z, 2016, 284: 1211–1222MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Lerner A K. On pointwise estimate involving sparse operator. New York J Math, 2016, 22: 341–349MathSciNetzbMATHGoogle Scholar
  15. [15]
    Lerner A K, Obmrosi S, Rivera-Rios I. On pointwise and weighted estimates for commutators of Calderon-Zygmund operators. Adv Math, 2017, 319: 153–181MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Lerner A K, Obmrosi S, Rivera-Rios I. Commutators of singular integral operators revisied. arXiv:1709.04724Google Scholar
  17. [17]
    Li K. Sparse domination theorem for mltilinear singular integral operators with L r-Hörmander condition. Michigan Math J, 2018, 67: 253–265MathSciNetCrossRefGoogle Scholar
  18. [18]
    Li K, Moen K, Sun W. The sharp weighted bound for multilinear maximal functions and Calderon-Zygmund operators. J Four Anal Appl, 2014, 20: 751–765MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Petermichl S. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic. Amer J Math, 2007, 129: 1355–1375MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Petermichl S. The sharp weighted bound for the Riesz transforms. Proc Amer Math Soc, 2008, 136: 1237–1249MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Rao M, Ren Z. Theory of Orlicz spaces//Monographs and Textbooks in Pure and Applied Mathematics, 146. New York: Marcel Dekker Inc, 1991Google Scholar
  22. [22]
    Wilson M J. Weighted inequalities for the dyadic square function without dyadic A . Duke Math J, 1987, 55: 19–50MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Applied MathematicsBeijing Normal UniversityZhuhaiChina

Personalised recommendations