Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1121–1135 | Cite as

The Real Hyper-Elliptic Subspaces of Teichmüller Space and Moduli Space

  • Guangming Hu (胡光明)Email author
  • Yi Qi (漆毅)Email author


Although the existence and uniqueness of Strebel differentials are proved by Jenkins and Strebel, the specific constructions of Strebel differentials are difficult. Two special kinds of special Strebel differentials are constructed in [5, 6]. The Strebel rays [3] and the eventually distance minimizing rays [9] are important in Teichmüller spaces and moduli spaces, respectively. Motivated by the study of [3, 9], two special kinds of Strebel rays in the real hyper-elliptic subspace of Teichmüller space and two special kinds of EDM rays in the real hyper-elliptic subspace of moduli space are studied in this article.

Key words

Teichmüller space Strebel ray moduli space EDM ray real hyper-elliptic subspace 

2010 MR Subject Classification

32G15 30C62 30F60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abikoff W. Degenerating Families of Riemann Surfaces. Annals of Mathematics, 1977, 105(2): 29–44MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Amano M. On behavior of pairs of Teichmüller geodesic rays. Conformai Geometry and Dynamics of the American Mathematical Society, 2014, 18(2): 8–30CrossRefzbMATHGoogle Scholar
  3. [3]
    Amano M. The asymptotic behavior of Jenkins-Strebel rays. Conformal Geometry and Dynamics of the American Mathematical Society, 2014, 18(9): 157–170MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Amburg N Y. An example of a regular Strebel differential. Russian Mathematical Surveys, 2002, 57(5): 987–988MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Artamkin I V, Levitskaya Y A, Shabat G B. Examples of families of Strebel differentials on hyperelliptic curves. Functional Analysis and Its Applications, 2009, 43(2): 140–142MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Bogatyrev A. Elementary construction of Jenkins-Strebel differentials. Mathematical Notes, 2012, 91(1): 135–138MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Bogatyrev A. Extremal polynomials and Riemann surfaces. Springer Berlin Heidelberg, 2012CrossRefzbMATHGoogle Scholar
  8. [8]
    Bonatti C, Paris L. Roots in the mapping class groups. Proceedings of the London Mathematical Society, 2009, 98(2): 471–503MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Farb B, Masur H. Teichmüller geometry of moduli space, I: distance minimizing rays and the deligne-mumford compactification. Journal of Differential Geometry, 2008, 85(2): 187–227CrossRefzbMATHGoogle Scholar
  10. [10]
    Gardiner F P. Teichmüller theory and quadratic differentials. Wiley, 1987zbMATHGoogle Scholar
  11. [11]
    Hatcher A. Algebraic Topology. Cambridge University Press, 2002zbMATHGoogle Scholar
  12. [12]
    Herrlich F, Schmithuesen G. On the boundary of Teichmueller disks in Teichmueller and in Schottky space. Mathematics, 2007: 293–349Google Scholar
  13. [13]
    Hubbard J, Masur H. Quadratic differentials and foliations. Acta Mathematica, 1979, 142(1): 221–274MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Imayoshi Y, Taniguchi M. An introduction to Teichmüller spaces. Springer-Verlag, 1992CrossRefzbMATHGoogle Scholar
  15. [15]
    Ji L, Macpherson R. Geometry of compactifications of locally symmetric spaces. Annales De Linstitut Fourier, 2002, 52(2): 457MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Katok A B, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, 1995CrossRefzbMATHGoogle Scholar
  17. [17]
    Kerckhoff S P. The asymptotic geometry of Teichmüller space. Topology, 1978, 19(1): 23–41MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Letho O. Univalent Functions and Teichmüller Spaces. Springer Berlin, 2012Google Scholar
  19. [19]
    Liu J. On the Existence of Jenkins-Strebel Differentials. Bulletin of the London Mathematical Society, 2004, 36(3): 365–377MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Lochak P. On arithmetic curves in the moduli space of curves. Journal of the Institute of Mathematics of Jussieu, 2005, 4(3): 443–508MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Masur H. The Jenkins Strebel differentials with one cylinder are dense. Commentarii Mathematici Helvetici, 1979, 54(1): 179–184MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Nag S. The Complex Analytic Theory of Teichmüller Space. Wiley, 1988zbMATHGoogle Scholar
  23. [23]
    Natanzon S M. Moduli of Riemann Surfaces, Real Algebraic Curves, and Their Superanalogs. Translations of Mathematical Monographs, 2004, 7(55): 11–13CrossRefzbMATHGoogle Scholar
  24. [24]
    Song F, Qi Y, Hu G. The eventually distance minimizing rays in moduli space. Acta Mathematica Scientia, 2018, 38(3): 950–964MathSciNetCrossRefGoogle Scholar
  25. [25]
    Strebel K. Quadratic Differentials. Springer, 1984CrossRefzbMATHGoogle Scholar
  26. [26]
    Teichmüller O. Extremale quasikonforme Abbildungen und quadratische Differentiate. Abh Preuss Akad Wiss Math -Natur KI Nr, 1940, 22: 1–197zbMATHGoogle Scholar
  27. [27]
    Walsh C. The asymptotic geometry of the Teichmüller metric. arXiv preprint arXiv, 2012: 1210.5565Google Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.LMIB, School of Mathematics and Systems ScienceBeihang UniversityBeijingChina

Personalised recommendations