Pointwise Multiplication Operators from Hardy Spaces to Weighted Bergman Spaces in the Unit Ball of ℂn

Abstract

This article is devoted to characterizing the boundedness and compactness of multiplication operators from Hardy spaces to weighted Bergman spaces in the unit ball of ℂn.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Carleson L. An interpolation problem for bounded analytic functions. Amer J Math, 1958, 80: 921–930

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    Carleson L. Interpolations by bounded analytic functions and the corona problem. Ann of Math, 1962, 76: 547–559

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    Duren P. Extension of a theorem of Carleson. Bull Amer Math Soc, 1969, 75: 143–146

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    Feldman N S. Pointwise multipliers from the Hardy space to the Bergman space. Illinois J Math, 1999, 43: 211–221

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    Hörmander L. L p estimates for (pluri-) subharmonic functions. Math Scand, 1967, 20: 65–78

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    Hu P Y, Shi J H. Multipliers on Dirichlet type spaces. Acta Math Sinica (Engl Ser), 2001, 17(2): 263–272

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    Hu Z J. Extended Cesáro operators on the Bloch space in the unit ball of ℂn. Acta Mathematica Scientia, 2003, 23B: 561–566

    Article  MATH  Google Scholar 

  8. [8]

    Li B, Ouyang C H. Higher radial derivative of Bloch type functions. Acta Mathematica Scientia, 2002, 22B(4): 433–445

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    Li B, Ouyang C H. Higher radial derivative of functions of Q p spaces and its applications. J Math Anal Appl, 2007, 327: 1257–1272

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    Li S, Stevic S. Riemann-Stieltjes operators between different weighted Bergman spaces. Bull Belg Math Soc Simon Stevin, 2008, 15: 677–686

    MathSciNet  MATH  Google Scholar 

  11. [11]

    Luecking D H. Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc Lond Math Soc, 1991, 63: 595–619

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    Ortega J M, Fàbrega J. Pointwise multipliers and corona type decomposition in BMOA. Ann Inst Fourier(Grenoble), 1996, 46: 111–137

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    Ortega J M, Fàbrega J. Pointwise multipliers and decomposition theorems in F ∞,qs . Math Ann, 2004, 329: 247–277

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    Ouyang C H, Yang W S, Zhao R H. Characterizations of Bergman spaces and Bloch space in the unit ball of ℂn. Trans Amer Math Soc, 1995, 347: 4301–4313

    MathSciNet  MATH  Google Scholar 

  15. [15]

    Ouyang C H, Yang W S, Zhao R H. Mobius invariant Q p Spaces associated with the Green’s function on the unit ball of ℂn. Pacific J Math, 1998, 182: 69–99

    MathSciNet  Article  Google Scholar 

  16. [16]

    Pau J, Zhao R H. Carleson measure, Riemann-Stieltjes and multiplication operators on a general family of function spaces. Integral Equations and Operator Theory, 2014, 78: 483–514

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    Pau J. Integration operators between Hardy spaces on the unit ball of ℂn. J Funct Anal, 2016, 270: 134–176

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    Peng R, Ouyang C H. Pointwise multipliers from Dirichlet type spaces D T to Q p spaces in the unit ball of ℂn. J Math Anal Appl, 2008, 338: 1448–1457

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    Peng R, Ouyang C H. Riemann-Stieltjes operators and multipliers on Q p spaces in the unit ball of ℂn. J Math Anal Appl, 2011, 377: 180–193

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    Peng R, Wu Y, Deng F W. Carleson measures, Riemann-Stieltjes operators and multipliers on F(p, q, s) spaces in the unit ball of ℂn. Acta Mathematica Scientia, 2016, 36B: 635–654

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    Pommerenke C H. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment Math Helv, 1997, 52: 591–602

    Article  MATH  Google Scholar 

  22. [22]

    Rudin W. Function Theory in the Unit Ball of ℂn. New York: Springer-Verlag, 1980

    Book  Google Scholar 

  23. [23]

    Stegenga D A. Multipliers of the Dirichlet space. Illinois J Math, 1980, 24: 113–139

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    Tjani M. Compact composition operators on Besov spaces. Trans Amer Math Soc, 2003, 355: 4683–4698

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    Wu Z J. Carleson measures and multipliers for Dirichlet spaces. J Funct Anal, 1999, 169: 148–163

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    Xiao J. Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball. J Lond Math Soc, 2004, 70: 199–214

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    Xiao J. Riemann-Stieltjes integral operators between weighted Bergman spaces. Mathematics, 2006

  28. [28]

    Xiao J. The Q p Carleson measure problem. Advances in Mathmatics, 2008, 217: 2075–2088

    Article  MATH  Google Scholar 

  29. [29]

    Yang W S. Carleson type measure characterization of Q p spaces. Analysis, 1998, 18: 345–349

    Article  MATH  Google Scholar 

  30. [30]

    Yang W S. Vanishing Carleson type measure characterization of Q p,0. C R Math Rep Acad Sci Canada, 1999, 21 (1): 1–5

    MATH  Google Scholar 

  31. [31]

    Zhang X J. The pointwise multipliers of Bloch type space β p and Dirichlet type space D q on the unit ball of ℂn. J Math Anal Appl, 2003, 285: 376–386

    MathSciNet  Article  Google Scholar 

  32. [32]

    Zhang X, Xiao J, Hu Z, Liu Y, Xiong D, Wu Y. Equivalent characterization and application of F(p, q, s) space in ℂn. Acta Mathematica Sinica, 2011, 54: 1029–1042 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  33. [33]

    Zhang X J, He C Z, Cao F F. The equivalent norms of F(p, q, s) space in ℂn. J Math Anal Appl, 2013, 401: 601–610

    MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    Zhao R H. On a general family of function spaces. Ann Acad Sci Fenn Math Dissertations, 1996, 105: 56

    MathSciNet  MATH  Google Scholar 

  35. [35]

    Zhao R H. Pointwise multipliers from weighted Bergman spaces and Hardy spaces to weighted Bergman spaces. Annales Academiæ Scientiarum Fennicæ, 2004, 29: 139–150

    MathSciNet  MATH  Google Scholar 

  36. [36]

    Zhao R H, Zhu K H. Theory of Bergman Spaces in the unit ball of ℂn. Mem Soc Math Fr, 2008, 115

  37. [37]

    Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics. Vol 226. New York: Springer-Verlag, 2005

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ru Peng 彭茹 or Xiaolei Xing 邢晓蕾 or Liangying Jiang 江良英.

Additional information

Supported by the National Natural Science Foundation of China (11601400 and 11771441) and the Fundamental Research Funds for the Central Universities (2017IB012 and 2017IVB064).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, R., Xing, X. & Jiang, L. Pointwise Multiplication Operators from Hardy Spaces to Weighted Bergman Spaces in the Unit Ball of ℂn. Acta Math Sci 39, 1003–1016 (2019). https://doi.org/10.1007/s10473-019-0407-z

Download citation

Key words

  • Pointwise multiplication operators
  • Hardy spaces
  • Bergman spaces
  • Carleson measure

2010 MR Subject Classification

  • 32A37
  • 47B38