Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 3, pp 781–796 | Cite as

Moments of Continuous-State Branching Processes in Lévy Random Environments

  • Lina JiEmail author
  • Xiangqi ZhengEmail author
Article
  • 30 Downloads

Abstract

For continuous-state branching processes in Lévy random environments, the recursion of n-moments and the equivalent condition for the existence of general f-moments are established, where f is a positive continuous function satisfying some standard conditions.

Key words

Branching processes continuous-state moments random environment stochastic equations 

2010 MR Subject Classification

60J80 60K37 60H20 60G51 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Heartfelt thanks are given to Professor Zenghu Li for his careful guidance and helpful suggestions.

References

  1. [1]
    Luschgy H, Pagès G. Moment estimates for Lévy processes. Electron Commun Prob, 2008, 13: 422–434CrossRefzbMATHGoogle Scholar
  2. [2]
    Li Z. Measure-Valued Branching Markov Processes. Heidelberg: Springer-Verlag, 2011CrossRefzbMATHGoogle Scholar
  3. [3]
    Gün O, König W, Sekulovió O. Moment asymptotics for branching random walks in random environment. Electron J Probab, 2013, 18(63): 1–18MathSciNetGoogle Scholar
  4. [4]
    Agarwal R, Hristova S, Kopanov P, O’regan D. Impulsive differential equations with Gamma distributed moments of impulses and p-moment exponential stability. Acta Mathematica Scientia, 2017, 37B(4): 985–997MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Qiu D, Chen P, Andrei V. Complete moment convergence for LP-mixingales. Acta Mathematica Scientia, 2017, 37B(5): 1319–1330CrossRefzbMATHGoogle Scholar
  6. [6]
    Zhao Y. Asymptotic properties of the moment convergence for NA sequences. Acta Mathematica Scientia, 2014, 34B(2): 301–312MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Barczy M, Li Z, Pap G. Moment formulas for multitype continuous state and continuous time branching process with immigration. J Theor Probab, 2016, 29(3): 958–995MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Ji L, Li Z. Moments of continuous-state branching processes with or without immigration. 2017[2018-03-31]. https://arxiv.org/abs/1702.08698
  9. [9]
    Jirina M. Stochastic branching processes with continuous state space. Czech Math J, 1958, 8: 292–313MathSciNetzbMATHGoogle Scholar
  10. [10]
    Bansaye V, Millan J C P, Smadi C. On the extinction of continuous state branching processes with catastrophes. Electron J Probab, 2013, 18(106): 1–31MathSciNetzbMATHGoogle Scholar
  11. [11]
    Palau S, Pardo J C. Continuous state branching processes in random environment: the Brownian case. Stoch Process Appl, 2017, 127: 957–994MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    He H, Li Z, Xu W. Continuous-state branching processes in Lévy random environments. J Theor Probab, 2017[2018-03-31].  https://doi.org/10.1007/s10959-017-0765-1
  13. [13]
    Palau S, Pardo J C. Branching processes in a Lévy random environment. Acta Appl Math, 2018, 153(1): 55–79MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Dawson D A, Li Z. Stochastic equations, flows and measure-valued processes. Ann Probab, 2012, 40(2): 813–857MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Caballero M E, Lambert A, Uribe Bravo G. Proof(s) of the Lamperti representation of continuous-state branching processes. Probab Surv, 2009, 6: 62–89MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Sato K I. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999zbMATHGoogle Scholar
  17. [17]
    Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972CrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations