Skip to main content
Log in

Least Squares Estimator for Path-Dependent McKean-Vlasov SDEs via Discrete-Time Observations

Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this article, we are interested in least squares estimator for a class of path-dependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribution of the least squares estimator for the unknown parameters involved by establishing an appropriate contrast function. Comparing to the existing results in the literature, the innovations of this article lie in three aspects: (i) We adopt a tamed Euler-Maruyama algorithm to establish the contrast function under the monotone condition, under which the Euler-Maruyama scheme no longer works; (ii) We take the advantage of linear interpolation with respect to the discrete-time observations to approximate the functional solution; (iii) Our model is more applicable and practice as we are dealing with SDEs with irregular coefficients (for example, Holder continuous) and path-distribution dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishwal J P N. Parameter Estimation in Stochastic Differential Equations. Berlin: Springer, 2008

    Book  MATH  Google Scholar 

  2. Buckdahn R, Li J, Peng S, Rainer C. Mean-field stochastic differential equations and associated PDEs. Ann Probab, 2017, 45(2): 824–878

    Article  MathSciNet  MATH  Google Scholar 

  3. Butkovsky O. On ergodic properties of nonlinear Markov chains and stochastic McKean-Vlasov equations. Theory Probab Appl, 2014, 58(4): 661–674

    Article  MathSciNet  MATH  Google Scholar 

  4. Eberle A, Guillin A, Zimmer R. Quantitative Harris type theorems for diffusions and McKean-Vlasov processes. arXiv:1606.06012v2, 2017. https://arxiv.org/pdf/1606.06012.pdf

  5. Dos Reis G, Salkeld W, Tugaut J. Freidlin-Wentzell LDPs in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann Appl Probab, 2019, 29(3): 1487–1540

    Article  MathSciNet  Google Scholar 

  6. Friedman A. Stochastic Differential Equations and Applications. Vol 1. Probability and Mathematical Statistics, Vol. 28. New York-London: Academic Press, INC, 1975

    Google Scholar 

  7. Gloter A, Sørensen M. Estimation for stochastic differential equations with a small diffusion coefficient. Stochastic Process Appl, 2009, 119(3): 679–699

    Article  MathSciNet  MATH  Google Scholar 

  8. Hammersley W, Šiška D, Szpruch L. McKean-Vlasov SDE under measure dependent Lyapunov conditions. arXiv:1802.03974v1, 2018. https://arxiv.org/pdf/1802.03974.pdf

  9. Hairer M, Mattingly J C, Scheutzow M. Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations. Probab. Theory Related Fields, 2011, 149(1/2): 223–259

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions. Stochastic Process. Appl, 2009, 119(8): 2465–2480

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang X, Liu C, Wang F-Y. Order preservation for path-distribution dependent SDEs. Commun Pure Appl Anal, 2018, 17(5): 2125–2133

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang X, Röckner M, Wang F-Y. Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs. arXiv:1709.00556, 2017. https://arxiv.org/pdf/1709.00556.pdf

  13. Hutzenthaler M, Jentzen A, Kloeden P E. Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann Appl Probab, 2012, 22(4): 1611–1641

    Article  MathSciNet  MATH  Google Scholar 

  14. Itô K, Nisio M. On stationary solutions of a stochastic differential equation. J Math Kyoto Univ, 1964, 4: 1–75

    Article  MathSciNet  MATH  Google Scholar 

  15. Kutoyants Yu A. Statistical Inference for Ergodic Diffusion Processes. London, Berlin, Heidelberg: Springer-Verlag, 2004

    Book  MATH  Google Scholar 

  16. Li J, Min H. Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J Control Optim, 2016, 54(3): 1826–1858

    Article  MathSciNet  MATH  Google Scholar 

  17. Li J, Wu J-L. On drift parameter estimation for mean-reversion type stochastic differential equations with discrete observations. Adv Difference Equ, 2016, (90): 1–23

    MathSciNet  MATH  Google Scholar 

  18. Liptser R S, Shiryaev A N. Statistics of Random Processes: II Applications. Second Edition. Berlin, Heidelberg, New York: Springer-Verlag, 2001

    Book  MATH  Google Scholar 

  19. Long H. Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises. Statist Probab Lett, 2009, 79(19): 2076–2085

    Article  MathSciNet  MATH  Google Scholar 

  20. Long H. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Math Sci Ser B Engl Ed, 2010, 30(3): 645–663

    MathSciNet  MATH  Google Scholar 

  21. Long H, Ma C, Shimizu Y. Least squares estimators for stochastic differential equations driven by small Lévy noises. Stochastic Process Appl, 2017, 127(5): 1475–1495

    Article  MathSciNet  MATH  Google Scholar 

  22. Long H, Shimizu Y, Sun W. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivariate Anal, 2013, 116: 422–439

    Article  MathSciNet  MATH  Google Scholar 

  23. Ibragimov I A, Hasminskii R Z. Statistical Estimation: Asymptotic Theory. New York, Berlin: Springer-Verlag, 1981

    Book  MATH  Google Scholar 

  24. Ma C. A note on “Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises”. Statist Probab Lett, 2010, 80(19/20): 1528–1531

    Article  MathSciNet  MATH  Google Scholar 

  25. Masuda H. Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases. MHF Preprint Series 2005-7, Kyushu University, 2005

    Google Scholar 

  26. McKean H P. A class of Markov processes associated with nonlinear parabolic equations. Proceedings of the National Academy of Sciences, 1966, 56: 1907–1911

    Article  MathSciNet  MATH  Google Scholar 

  27. Mishura Yu S, Veretennikov A Yu. Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations. arXiv:1603.02212v4, 2016. https://arxiv.org/pdf/1603.02212.pdf

  28. Mohammed SEA. Stochastic Functional Differential Equations. Boston: Pitman, 1984

    MATH  Google Scholar 

  29. Prakasa Rao B L S. Statistical Inference for Diffusion Type Processes. Arnold, London, New York: Oxford University Press, 1999

    MATH  Google Scholar 

  30. Ren P, Wu J-L. Least squares estimation for path-distribution dependent stochastic differential equations. arXiv:1802.00820, 2018. https://arxiv.org/pdf/1802.00820.pdf

  31. Shimizu Y, Yoshida N. Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process, 2006, 9(3): 227–277

    Article  MathSciNet  MATH  Google Scholar 

  32. Sørensen M, Uchida M. Small diffusion asymptotics for discretely sampled stochastic differential equations. Bernoulli, 2003, 9(6): 1051–1069

    Article  MathSciNet  MATH  Google Scholar 

  33. Sznitman A S. Topics in propagation of chaos. Ecole d’Ete de Probabilites de Saint-Flour XIX-1989, 165–251. Lecture Notes in Math, 1464. Berlin: Springer, 1991

    Google Scholar 

  34. Uchida M. Estimation for discretely observed small diffusions based on approximate martingale estimating functions. Scand J Statist, 2004, 31(4): 553–566

    Article  MathSciNet  MATH  Google Scholar 

  35. Uchida M. Approximate martingale estimating functions for stochastic differential equations with small noises. Stochastic Process Appl, 2008, 118(9): 1706–1721

    Article  MathSciNet  MATH  Google Scholar 

  36. van der Vaart A W. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 3. Cambridge: Cambridge University Press, 1998

  37. Veretennikov A Yu. On ergodic measures for McKean-Vlasov stochastic equations//Monte Carlo and Quasi-Monte Carlo Methods 2004, 471–486. Berlin: Springer, 2006

    Google Scholar 

  38. Wang F-Y. Estimates for invariant probability measures of degenerate SPDEs with singular and path-dependent drifts. Probab Theory Related Fields, 2018, 172(3/4): 1181–1214

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang F-Y. Distribution dependent SDEs for Landau type equations. Stochastic Process Appl, 2018, 128(2): 595–621

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Lun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, P., Wu, JL. Least Squares Estimator for Path-Dependent McKean-Vlasov SDEs via Discrete-Time Observations. Acta Math Sci 39, 691–716 (2019). https://doi.org/10.1007/s10473-019-0305-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0305-4

Key words

2010 MR Subject Classification

Navigation