Skip to main content
Log in

A Liouville Theorem for Stationary Incompressible Fluids of Von Mises Type

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We consider entire solutions u of the equations describing the stationary flow of a generalized Newtonian fluid in 2D concentrating on the question, if a Liouville-type result holds in the sense that the boundedness of u implies its constancy. A positive answer is true for p-fluids in the case p > 1 (including the classical Navier-Stokes system for the choice p = 2), and recently we established this Liouville property for the Prandtl-Eyring fluid model, for which the dissipative potential has nearly linear growth. Here we finally discuss the case of perfectly plastic fluids whose flow is governed by a von Mises-type stress-strain relation formally corresponding to the case p = 1. It turns out that, for dissipative potentials of linear growth, the condition of μ-ellipticity with exponent μ < 2 is sufficient for proving the Liouville theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bildhauer M, Fuchs M, Müller J. Existence and regularity for stationary incompressible flows with dissipative potentials of linear growth. To appear in Journal of Mathematical Fluid Mechanics. Preprint: https://doi.org/www.math.uni-sb.de/service/preprints/preprint398.pdf.

  2. Bildhauer M, Fuchs M, Zhang G. Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J Math Fluid Mech, 2013, 15(3): 583–616

    Article  MathSciNet  MATH  Google Scholar 

  3. Fuchs M. Liouville theorems for stationary flows of shear thickening fluids in the plane. J Math Fluid Mech, 2012, 14(3): 421–444

    Article  MathSciNet  MATH  Google Scholar 

  4. Fuchs M. Variations on Liouville’s theorem in the setting of stationary flows of generalized Newtonian fluids in the plane//Proceedings of the St. Petersburg Mathematical Society, Vol XV. Advances in Mathematical Analysis of Partial Differential Equations. volume 232 of Amer Math Soc Transl Ser 2. Providence, RI: Amer Math Soc, 2014: 79–98

    Google Scholar 

  5. Fuchs M, Müller J, Tietz C. Signal recovery via TV-type energies. Algebra i Analiz, 2017, 29(4): 159–195

    MathSciNet  MATH  Google Scholar 

  6. Fuchs M, Seregin G. Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Volume 1749 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  7. Fuchs M, Zhang G. Liouville theorems for entire local minimizers of energies defined on the class Llog L and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc Var Partial Differential Equations, 2012, 44(1/2): 271–295

    Article  MathSciNet  MATH  Google Scholar 

  8. Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I, Linearized Steady Problems. Volume 38 of Springer Tracts in Natural Philosophy. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  9. Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol II, Nonlinear Steady Problems. Volume 39 of Springer Tracts in Natural Philosophy. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  10. Gilbarg D, Weinberger H F. Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann Scuola Norm Sup Pisa Cl Sci, (4), 1978, 5(2): 381–404

    MathSciNet  MATH  Google Scholar 

  11. Hohenemser K, Prager W. Über die Ansätze der Mechanik isotroper Kontinua. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik und Mechanik, 1932, 12(4): 216–226

    Article  MATH  Google Scholar 

  12. Ja Jin B, Kang K. Liouville theorem for the steady-state non-newtonian Navier-Stokes equations in two dimensions. J Math Fluid Mech, 2014, 16(2): 275–292

    Article  MathSciNet  MATH  Google Scholar 

  13. Koch G, Nadirashvili N, Seregin G, Sverák V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203(1): 83–105

    Article  MathSciNet  MATH  Google Scholar 

  14. Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. Second English Edition, Revised and Enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Math Appl, Vol 2. Gordon and Breach, New York, London, Paris: Science Publishers, 1969

    Google Scholar 

  15. Málek J, Necas J, Rokyta M, Ružicka M. Weak and Measure-Valued Solutions to Evolutionary PDEs. Volume 13 of Applied Mathematics and Mathematical Computation. London: Chapman & Hall, 1996

    Book  MATH  Google Scholar 

  16. Prager W. Einführung in die Kontinuumsmechanik. Lehr- und Handbücher der Ingenieurwissenschaften, Bd. 20. Basel, Stuttgart: Birkhäuser Verlag, 1961

    Book  MATH  Google Scholar 

  17. Suquet P-M. Sur une nouveau cadre fonctionnel pour les équations de la plasticité. C R Acad Sc Paris (A), 1978, 286: 1129–1132

    MATH  Google Scholar 

  18. Suquet P-M. Un espace fonctionnel pour les équations de la plasticité. Ann Fac Sci Toulouse Math, (5), 1979, 1(1): 77–87

    Article  MathSciNet  MATH  Google Scholar 

  19. Temam R, Strang G. Functions of bounded deformation. Arch Rational Mech Anal, 1980/81, 75(1): 7–21

    Article  MathSciNet  MATH  Google Scholar 

  20. von Mises R. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913: 582–592

    MATH  Google Scholar 

  21. Zhang G. A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J Math Fluid Mech, 2013, 15(4): 771–782

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang G. Liouville theorems for stationary flows of shear thickening fluids in 2D. Ann Acad Sci Fenn Math, 2015, 40(2): 889–905

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fuchs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, M., Müller, J. A Liouville Theorem for Stationary Incompressible Fluids of Von Mises Type. Acta Math Sci 39, 1–10 (2019). https://doi.org/10.1007/s10473-019-0101-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0101-1

Key words

2010 MR Subject Classification

Navigation