Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Annals of Mathematics and Artificial Intelligence
  3. Article
Diversity, dependence and independence
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Four simple axioms of dependence measures

14 July 2018

Tamás F. Móri & Gábor J. Székely

Rényi 100, Quantitative and qualitative (in)dependence

03 September 2021

M. Arató, Gy. O. H. Katona, … G. Tusnády

Calibrating Dependence Between Random Elements

20 February 2020

Abram M. Kagan & Gábor J. Székely

Notion of Information and Independent Component Analysis

25 May 2020

Una Radojičić, Klaus Nordhausen & Hannu Oja

Different Coefficients for Studying Dependence

01 September 2022

Oona Rainio

You say you want a revolution: two notions of probabilistic independence

03 February 2021

Alexander Meehan

Consistent Criteria for Hypotheses Testing

01 September 2019

Z. S. Zerakidze & O. G. Purtukhia

Test on the linear combinations of covariance matrices in high-dimensional data

11 April 2019

Zhidong Bai, Jiang Hu, … Chao Zhang

Strong model dependence in statistical analysis: goodness of fit is not enough for model choice

03 October 2018

John Copas & Shinto Eguchi

Download PDF
  • S701 FoIKS 2020
  • Open Access
  • Published: 01 November 2021

Diversity, dependence and independence

  • Pietro Galliani  ORCID: orcid.org/0000-0003-2544-53321 &
  • Jouko Väänänen2,3 

Annals of Mathematics and Artificial Intelligence volume 90, pages 211–233 (2022)Cite this article

  • 315 Accesses

  • Metrics details

Abstract

We propose a very general, unifying framework for the concepts of dependence and independence. For this purpose, we introduce the notion of diversity rank. By means of this diversity rank we identify total determination with the inability to create more diversity, and independence with the presence of maximum diversity. We show that our theory of dependence and independence covers a variety of dependence concepts, for example the seemingly unrelated concepts of linear dependence in algebra and dependence of variables in logic.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Whitney, H.: On the Abstract Properties of Linear Dependence. Amer. J. Math. 57(3), 509–533 (1935). https://doi.org/10.2307/2371182

    Article  MathSciNet  Google Scholar 

  2. van der Waerden, B.L.: Moderne Algebra. J. Springer, Berlin (1940)

    Book  Google Scholar 

  3. Armstrong, WW.: Dependency structures of data base relationships. Inf Process. 74 (1974)

  4. Väänänen, J.: Dependence logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  5. Mann, AL., Sandu, G., Sevenster, M.: Independence-friendly logic. London Mathematical Society Lecture Note Series, vol. 386. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511981418. A game-theoretic approach

    Book  Google Scholar 

  6. Grädel, E., Väänänen, J.: Dependence and independence. Studia Log. 101(2), 399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2

    Article  MathSciNet  Google Scholar 

  7. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Log. 167(7), 557–589 (2016)

    Article  MathSciNet  Google Scholar 

  8. Väänänen, J.: Modal dependence logic. In: New perspectives on games and interaction, Texts in Logic and Games, vol. 4, pp 237–254. Amsterdam Univ. Press, Amsterdam (2008)

  9. Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal dependence logic. In: Advances in modal logic. Vol. 10, pp 294–312. Coll. Publ., London (2014)

  10. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and verification of hyperproperties. In: 43rd International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 117, pp 10–16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

  11. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure teams. Arch. Math. Log. 56(5-6), 475–489 (2017)

    Article  MathSciNet  Google Scholar 

  12. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Foundations of information and knowledge systems, Lecture Notes in Comput. Sci. https://doi.org/10.1007/978-3-319-90050-6_1, vol. 10833, pp 186–206. Springer, Cham (2018)

  13. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distribution identities in probabilistic team semantics. In: Logics in artificial intelligence, Lecture Notes in Comput. Sci. https://doi.org/10.1007/978-3-030-19570-0_2, vol. 11468, pp 304–320. Springer, Cham (2019)

  14. Oxley, J.G.: Matroid theory, vol. 3. Oxford University Press, USA (2006)

    MATH  Google Scholar 

  15. Good, I.J.: The population frequencies of species and the estimation of population parameters. Biometrika 40(3/4), 237–264 (1953)

    Article  MathSciNet  Google Scholar 

  16. Hill, M.: Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973). https://doi.org/10.2307/1934352

    Article  Google Scholar 

  17. Magurran, A.E.: Measuring biological diversity. Wiley, New Jersey (2004). https://books.google.fi/books?id=tUqzLSUzXxcC

    Google Scholar 

  18. Borda, M.: Fundamentals in information theory and coding. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  19. Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information. Elem. Inf. Theory 2, 1–55 (1991)

    Google Scholar 

  20. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inform. and Comput. 91(1), 128–141 (1991). https://doi.org/10.1016/0890-5401(91)90077-F

    Article  MathSciNet  Google Scholar 

  21. Shannon, C.E.: A mathematical theory of communication. Bell syst. Techn. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  22. Codd, E.F.: A relational model of data for large shared data banks communications. Commun. ACM 26(1) (1970)

  23. Lang, S., et al.: Algebra. Springer, Berlin (2002)

    Book  Google Scholar 

  24. Herrmann, C.: On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

    Article  MathSciNet  Google Scholar 

  25. Herrmann, C.: Corrigendum to: On the undecidability of implications between embedded multivalued database dependencies. Inform. and Comput. 204 (12), 1847–1851 (2006)

    Article  MathSciNet  Google Scholar 

  26. Hannula, M., Link, S.: On the interaction of functional and inclusion dependencies with independence atoms. In: International Conference on Database Systems for Advanced Applications, pp 353–369, Springer (2018)

  27. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica (1948)

    MATH  Google Scholar 

  28. Sayrafi, B., Van Gucht, D., Gyssens, M.: The implication problem for measure-based constraints. Inf. Syst. 33(2), 221–239 (2008)

    Article  Google Scholar 

  29. Niepert, M., Gyssens, M., Sayrafi, B., Van Gucht, D.: On the conditional independence implication problem: A lattice-theoretic approach. Artif. Intell. 202, 29–51 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for a number of helpful comments and suggestions. We are particularly grateful to Reviewer 2 for their careful reading of the manuscript and for providing a clearer proof for Theorem 3. The second author would like to thank the Academy of Finland, grant no: 322795. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101020762).

Funding

Open access funding provided by Libera Università di Bolzano within the CRUI-CARE Agreement.

Author information

Author notes

    Authors and Affiliations

    1. Faculty of Computer Science, Free University of Bozen-Bolzano, piazza Domenicani, 3, Bozen-Bolzano, 39100, Italy

      Pietro Galliani

    2. Department of Mathematics and Statistics, University of Helsinki, Pietari Kalmin katu 5, Helsinki, PL 68 FIN-00014, Finland

      Jouko Väänänen

    3. FNWI, ILLC, Universiteit van Amsterdam, P.O. Box 94242, Amsterdam, 1090 GE, The Netherlands

      Jouko Väänänen

    Authors
    1. Pietro Galliani
      View author publications

      You can also search for this author in PubMed Google Scholar

    2. Jouko Väänänen
      View author publications

      You can also search for this author in PubMed Google Scholar

    Corresponding author

    Correspondence to Pietro Galliani.

    Additional information

    Publisher’s note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    These authors contributed equally to this work.

    Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Reprints and Permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Galliani, P., Väänänen, J. Diversity, dependence and independence. Ann Math Artif Intell 90, 211–233 (2022). https://doi.org/10.1007/s10472-021-09778-8

    Download citation

    • Accepted: 04 October 2021

    • Published: 01 November 2021

    • Issue Date: March 2022

    • DOI: https://doi.org/10.1007/s10472-021-09778-8

    Share this article

    Anyone you share the following link with will be able to read this content:

    Sorry, a shareable link is not currently available for this article.

    Provided by the Springer Nature SharedIt content-sharing initiative

    Keywords

    • Dependence logic
    • Matroids
    • Independence
    • Team semantics

    Mathematics Subject Classification (2010)

    • 03B60
    Download PDF

    Working on a manuscript?

    Avoid the common mistakes

    Advertisement

    Search

    Navigation

    • Find a journal
    • Publish with us

    Discover content

    • Journals A-Z
    • Books A-Z

    Publish with us

    • Publish your research
    • Open access publishing

    Products and services

    • Our products
    • Librarians
    • Societies
    • Partners and advertisers

    Our imprints

    • Springer
    • Nature Portfolio
    • BMC
    • Palgrave Macmillan
    • Apress
    • Your US state privacy rights
    • Accessibility statement
    • Terms and conditions
    • Privacy policy
    • Help and support

    Not affiliated

    Springer Nature

    © 2023 Springer Nature