Skip to main content

Diversity, dependence and independence


We propose a very general, unifying framework for the concepts of dependence and independence. For this purpose, we introduce the notion of diversity rank. By means of this diversity rank we identify total determination with the inability to create more diversity, and independence with the presence of maximum diversity. We show that our theory of dependence and independence covers a variety of dependence concepts, for example the seemingly unrelated concepts of linear dependence in algebra and dependence of variables in logic.


  1. 1.

    Whitney, H.: On the Abstract Properties of Linear Dependence. Amer. J. Math. 57(3), 509–533 (1935).

    MathSciNet  Article  Google Scholar 

  2. 2.

    van der Waerden, B.L.: Moderne Algebra. J. Springer, Berlin (1940)

    Book  Google Scholar 

  3. 3.

    Armstrong, WW.: Dependency structures of data base relationships. Inf Process. 74 (1974)

  4. 4.

    Väänänen, J.: Dependence logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  5. 5.

    Mann, AL., Sandu, G., Sevenster, M.: Independence-friendly logic. London Mathematical Society Lecture Note Series, vol. 386. Cambridge University Press, Cambridge (2011). A game-theoretic approach

    Book  Google Scholar 

  6. 6.

    Grädel, E., Väänänen, J.: Dependence and independence. Studia Log. 101(2), 399–410 (2013).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Log. 167(7), 557–589 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Väänänen, J.: Modal dependence logic. In: New perspectives on games and interaction, Texts in Logic and Games, vol. 4, pp 237–254. Amsterdam Univ. Press, Amsterdam (2008)

  9. 9.

    Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal dependence logic. In: Advances in modal logic. Vol. 10, pp 294–312. Coll. Publ., London (2014)

  10. 10.

    Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and verification of hyperproperties. In: 43rd International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 117, pp 10–16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

  11. 11.

    Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure teams. Arch. Math. Log. 56(5-6), 475–489 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Foundations of information and knowledge systems, Lecture Notes in Comput. Sci., vol. 10833, pp 186–206. Springer, Cham (2018)

  13. 13.

    Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distribution identities in probabilistic team semantics. In: Logics in artificial intelligence, Lecture Notes in Comput. Sci., vol. 11468, pp 304–320. Springer, Cham (2019)

  14. 14.

    Oxley, J.G.: Matroid theory, vol. 3. Oxford University Press, USA (2006)

    MATH  Google Scholar 

  15. 15.

    Good, I.J.: The population frequencies of species and the estimation of population parameters. Biometrika 40(3/4), 237–264 (1953)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Hill, M.: Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article  Google Scholar 

  17. 17.

    Magurran, A.E.: Measuring biological diversity. Wiley, New Jersey (2004).

    Google Scholar 

  18. 18.

    Borda, M.: Fundamentals in information theory and coding. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  19. 19.

    Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information. Elem. Inf. Theory 2, 1–55 (1991)

    MathSciNet  Google Scholar 

  20. 20.

    Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inform. and Comput. 91(1), 128–141 (1991).

    MathSciNet  Article  Google Scholar 

  21. 21.

    Shannon, C.E.: A mathematical theory of communication. Bell syst. Techn. J. 27(3), 379–423 (1948)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Codd, E.F.: A relational model of data for large shared data banks communications. Commun. ACM 26(1) (1970)

  23. 23.

    Lang, S., et al.: Algebra. Springer, Berlin (2002)

    Book  Google Scholar 

  24. 24.

    Herrmann, C.: On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Herrmann, C.: Corrigendum to: On the undecidability of implications between embedded multivalued database dependencies. Inform. and Comput. 204 (12), 1847–1851 (2006)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Hannula, M., Link, S.: On the interaction of functional and inclusion dependencies with independence atoms. In: International Conference on Database Systems for Advanced Applications, pp 353–369, Springer (2018)

  27. 27.

    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica (1948)

    MATH  Google Scholar 

  28. 28.

    Sayrafi, B., Van Gucht, D., Gyssens, M.: The implication problem for measure-based constraints. Inf. Syst. 33(2), 221–239 (2008)

    Article  Google Scholar 

  29. 29.

    Niepert, M., Gyssens, M., Sayrafi, B., Van Gucht, D.: On the conditional independence implication problem: A lattice-theoretic approach. Artif. Intell. 202, 29–51 (2013)

    MathSciNet  Article  Google Scholar 

Download references


We thank the reviewers for a number of helpful comments and suggestions. We are particularly grateful to Reviewer 2 for their careful reading of the manuscript and for providing a clearer proof for Theorem 3. The second author would like to thank the Academy of Finland, grant no: 322795. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101020762).


Open access funding provided by Libera Università di Bolzano within the CRUI-CARE Agreement.

Author information



Corresponding author

Correspondence to Pietro Galliani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galliani, P., Väänänen, J. Diversity, dependence and independence. Ann Math Artif Intell (2021).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • Dependence logic
  • Matroids
  • Independence
  • Team semantics

Mathematics Subject Classification (2010)

  • 03B60