Abstract
Bio-inspired optimization aims at adapting observed natural behavioral patterns and social phenomena towards efficiently solving complex optimization problems, and is nowadays gaining much attention. However, researchers recently highlighted an inconsistency between the need in the field and the actual trend. Indeed, while nowadays it is important to design innovative contributions, an actual trend in bio-inspired optimization is to re-iterate the existing knowledge in a different form. The aim of this paper is to fill this gap. More precisely, we start first by highlighting new examples for this problem by considering and describing the concepts of chunking and cooperative learning. Second, by considering particle swarm optimization (PSO), we present a novel bridge between these two notions adapted to the problem of feature selection. In the experiments, we investigate the practical importance of our approach while exploring both its strength and limitations. The results indicate that the approach is mainly suitable for large datasets, and that further research is needed to improve the computational efficiency of the approach and to ensure the independence of the sub-problems defined using chunking.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Kar, A.K.: Bio inspired computing – a review of algorithms and scope of applications. Expert Syst. Appl. 59, 20–32 (2016). https://doi.org/10.1016/j.eswa.2016.04.018
Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering 137, 106040 (2019). https://doi.org/10.1016/j.cie.2019.106040
Glover, F., Sörensen, K.: Metaheuristics. Scholarpedia 10(4), 6532 (2015). https://doi.org/10.4249/scholarpedia.6532
Yang, X.-S. (ed.): Recent advances in swarm intelligence and evolutionary computation. Springer International Publishing, Berlin (2015). https://doi.org/10.1007/978-3-319-13826-8
Caserta, M., Voß, S: Metaheuristics: Intelligent problem solving. In: Matheuristics, pp. 1–38. Springer US. https://doi.org/10.1007/978-1-4419-1306-7_1 (2009)
Abdelhafez, A., Luque, G., Alba, E.: Parallel execution combinatorics with metaheuristics: Comparative study. Swarm and Evolutionary Computation 55, 100692 (2020). https://doi.org/10.1016/j.swevo.2020.100692
Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2013). https://doi.org/10.1111/itor.12001
Del Ser, J., Osaba, E., Molina, D., Yang, X-S, Salcedo-Sanz, S., Camacho, D., Das, S., Suganthan, P.N., Coello, C.A.C., Herrera, F.: Bio-inspired computation: Where we stand and what’s next. Swarm and Evolutionary Computation 48, 220–250 (2019). https://doi.org/10.1016/j.swevo.2019.04.008
Villalón, C L C, Stützle, T., Dorigo, M.: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty. In: Lecture Notes in Computer Science, 12421, pp. 121–133, Springer International Publishing. https://doi.org/10.1007/978-3-030-60376-2_10 (2020)
de Armas, J., Lalla-Ruiz, E., Tilahun, S.L., Voß, S: Similarity in metaheuristics: a gentle step towards a comparison methodology. Nat. Comput., pp. 1–23, https://doi.org/10.1007/s11047-020-09837-9 (2021)
Reid, C.: Cooperation vs. competition in a technological environment. Ph.D. Thesis, University of Queensland Library. https://doi.org/10.14264/uql.2017.194 (2016)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE. https://doi.org/10.1109/icnn.1995.488968 (1995)
Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE international conference on systems, man, and cybernetics. computational cybernetics and simulation, IEEE. https://doi.org/10.1109/icsmc.1997.637339 (1997)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). https://doi.org/10.1162/153244303322753616
Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. Thesis, University of Waikato (1999)
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis 143, 106839 (2020). https://doi.org/10.1016/j.csda.2019.106839
Raza, M.S., Qamar, U.: Introduction to feature selection. In: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications, pp. 1–25, Springer Singapore. https://doi.org/10.1007/978-981-10-4965-1_1 (2019)
Sarhani, M., Voß, S: PSO-based cooperative learning using chunking. In: Lecture Notes in Computer Science, 12096, pp. 278–288, Springer International Publishing. https://doi.org/10.1007/978-3-030-53552-0_26 (2020)
Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956). https://doi.org/10.1037/h0043158
Nievergelt, J.: Information content of chess positions. ACM SIGART Bulletin, (62), pp. 13–15. https://doi.org/10.1145/1045398.1045400 (1977)
Laird, J.E., Rosenbloom, P.S., Newell, A.: Chunking in Soar: The anatomy of a general learning mechanism. Mach. Learn. 1(1), 11–46 (1986). https://doi.org/10.1007/bf00116249
Woodruff, D.L.: Proposals for chunking and tabu search. Eur. J. Oper. Res. 106(2-3), 585–598 (1998). https://doi.org/10.1016/s0377-2217(97)00293-2
Voß, S., Gutenschwager, K.: A chunking based genetic algorithm for the Steiner tree problem in graphs. In: Pardalos, P.M., Du, D.-Z. (eds.) Network Design: Connectivity and Facilities Location, 40, pp. 335–355, AMS, Princeton. https://doi.org/10.1090/dimacs/040/20 (1998)
Woodruff, D.L.: A chunking based selection strategy for integrating meta-heuristics with branch and bound. In: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 499–511, Springer US. https://doi.org/10.1007/978-1-4615-5775-3_34 (1999)
Stringer, H., Wu, A.S.: Winnowing wheat from chaff: The chunking GA. In: Genetic and Evolutionary Computation – GECCO 2004, pp. 198–209, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_18 (2004)
Tran, B., Xue, B., Zhang, M.: Variable-length particle swarm optimization for feature selection on high-dimensional classification. IEEE Transactions on Evolutionary Computation 23(3), 473–487 (2019). https://doi.org/10.1109/tevc.2018.2869405
Ramkumar, P., Acuna, D.E., Berniker, M., Grafton, S.T., Turner, R.S., Kording, K.P.: Chunking as the result of an efficiency computation trade-off. Nat. Commun., 7(12176). https://doi.org/10.1038/ncomms12176 (2016)
Yoon, M.: A constant-time chunking algorithm for packet-level deduplication. ICT Express 5(2), 131–135 (2019). https://doi.org/10.1016/j.icte.2018.05.005
Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Transactions on Evolutionary Computation 14(6), 959–974 (2010). https://doi.org/10.1109/tevc.2010.2046667
Jovanovic, R., Tuba, M., Voß, S: Fixed set search applied to the traveling salesman problem. In: International Workshop on Hybrid Metaheuristics, pp. 63–77, Springer. https://doi.org/10.1007/978-3-030-05983-5_5 (2019)
Maniezzo, V., Stüzle, T., Voß, S (eds.): Matheuristics: Hybridizing metaheuristics and mathematical programming. Springer Verlag, Berlin (2010)
Taillard, E.D., Voß, S: POPMUSIC — Partial Optimization Metaheuristic under Special Intensification Conditions. In: Essays and surveys in metaheuristics. Operations Research/Computer Science Interfaces Series, 15, pp. 613–629, Springer US. https://doi.org/10.1007/978-1-4615-1507-4_27 (2002)
Kronfeldner, M.: Divide and conquer. Oxford University Press, Oxford (2018). https://doi.org/10.1093/oso/9780198823650.003.0011
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006). https://doi.org/10.1109/tevc.2005.857610
Aoun, O., Sarhani, M., El Afia, A: Particle swarm optimisation with population size and acceleration coefficients adaptation using hidden Markov model state classification. International Journal of Metaheuristics 7(1), 1–29 (2018). https://doi.org/10.1504/ijmheur.2018.091867
van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004). https://doi.org/10.1109/TEVC.2004.826069
Niu, B., Zhu, Y., He, X., Wu, H.: MCPSO: A multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput. 185(2), 1050–1062 (2007). https://doi.org/10.1016/j.amc.2006.07.026
Aoun, O., El Afia, A, Talbi, E-G: A cooperative multi-swarm particle swarm optimizer based hidden Markov model. In: Heuristics for Optimization and Learning, Studies in Computational Intelligence, 906, pp. 315–334. Springer International Publishing. https://doi.org/10.1007/978-3-030-58930-1_21 (2020)
Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Transactions on Evolutionary Computation 21(4), 644–660 (2017). https://doi.org/10.1109/tevc.2017.2675628
Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable optimization. Inform. Sci. 291, 43–60 (2015). https://doi.org/10.1016/j.ins.2014.08.039
Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation 16(2), 210–224 (2012). https://doi.org/10.1109/tevc.2011.2112662
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997). https://doi.org/10.1109/4235.585892
Sondergeld, L., Voß, S: Cooperative intelligent search using adaptive memory techniques. In: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 297–312. Springer US. https://doi.org/10.1007/978-1-4615-5775-3_21(1999)
El-Abd, M., Hassan, H., Anis, M., Kamel, M.S., Elmasry, M.: Discrete cooperative particle swarm optimization for FPGA placement. Appl. Soft Comput. 10(1), 284–295 (2010). https://doi.org/10.1016/j.asoc.2009.07.011
Segredo, E., Lalla-Ruiz, E., Hart, E., Voß, S: On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Syst. Appl. 102, 126–142 (2018). https://doi.org/10.1016/j.eswa.2018.02.024
Lalla-Ruiz, E., Segredo, E., Voß, S: A cooperative learning approach for the quadratic knapsack problem. In: Lecture Notes in Computer Science, 11353, pp. 31–35, Springer International Publishing. https://doi.org/10.1007/978-3-030-05348-2_3 (2018)
Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. In: Lecture Notes in Computer Science, 3005, pp. 489–500. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24653-4_50 (2004)
Lessmann, S., Voß, S: Feature selection in marketing applications. In: Advanced Data Mining and Applications, pp. 200–208. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03348-3_21 (2009)
Unler, A., Murat, A.: A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 206(3), 528–539 (2010). https://doi.org/10.1016/j.ejor.2010.02.032
Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Appl. Soft Comput. 18, 261–276 (2014). https://doi.org/10.1016/j.asoc.2013.09.018
Vieira, S.M., Sousa, J.M.C., Runkler, T.A.: Two cooperative ant colonies for feature selection using fuzzy models. Expert Syst. Appl. 37(4), 2714–2723 (2010). https://doi.org/10.1016/j.eswa.2009.08.026
Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Transactions on Knowledge and Data Engineering 25(1), 1–14 (2013). https://doi.org/10.1109/tkde.2011.181
Moradi, P., Rostami, M.: Integration of graph clustering with ant colony optimization for feature selection. Knowl.-Based Syst. 84, 144–161 (2015). https://doi.org/10.1016/j.knosys.2015.04.007
Banka, H., Dara, S.: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation. Pattern Recogn. Lett. 52, 94–100 (2015). https://doi.org/10.1016/j.patrec.2014.10.007
Sarhani, M., El Afia, A, Faizi, R.: Facing the feature selection problem with a binary PSO-GSA approach. In: Operations Research/Computer Science Interfaces Series, 62, pp. 447–462. Springer International Publishing. https://doi.org/10.1007/978-3-319-58253-5_26 (2017)
Vieira, S.M., Mendonça, L.F., Farinha, G.J., Sousa, J.M.C.: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13 (8), 3494–3504 (2013). https://doi.org/10.1016/j.asoc.2013.03.021
Vignolo, L.D., Milone, D.H., Scharcanski, J.: Feature selection for face recognition based on multi-objective evolutionary wrappers. Expert Syst. Appl. 40 (13), 5077–5084 (2013). https://doi.org/10.1016/j.eswa.2013.03.032
Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017). https://doi.org/10.1016/j.neucom.2017.04.053
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory - COLT’92. ACM Press. https://doi.org/10.1145/130385.130401 (1992)
Miranda, L.J.V.: PySwarms: a research toolkit for particle swarm optimization in Python. The Journal of Open Source Software 3(21), 433 (2018). https://doi.org/10.21105/joss.00433
Liu, H., Setiono, R.: Chi2: feature selection and discretization of numeric attributes. In: Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, pp. 388–391. IEEE. https://doi.org/10.1109/tai.1995.479783 (1995)
Ross, B.C.: Mutual information between discrete and continuous data sets. PLoS ONE 9(2), e87357 (2014). https://doi.org/10.1371/journal.pone.0087357
Mao, K.Z.: Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 34(1), 629–634 (2004). https://doi.org/10.1109/tsmcb.2002.804363
Srisukkham, W., Zhang, L., Neoh, S.C., Todryk, S., Lim, C.P.: Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization. Appl. Soft Comput. 56, 405–419 (2017). https://doi.org/10.1016/j.asoc.2017.03.024
Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. J. Mach. Learn. Res. 3, 1265–1287 (2003). https://doi.org/10.1162/153244303322753661
Acknowledgements
This work is supported by the Alexander von Humboldt Foundation.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Sarhani, M., Voß, S. Chunking and cooperation in particle swarm optimization for feature selection. Ann Math Artif Intell 90, 893–913 (2022). https://doi.org/10.1007/s10472-021-09752-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-021-09752-4