Ranking kinematics for revising by contextual information


Probability kinematics is a leading paradigm in probabilistic belief change. It is based on the idea that conditional beliefs should be independent from changes of their antecedents’ probabilities. In this paper, we propose a re-interpretation of this paradigm for Spohn’s ranking functions which we call Generalized Ranking Kinematics as a new principle for iterated belief revision of ranking functions by sets of conditional beliefs with respect to their specific subcontext. By taking into account semantical independencies, we can reduce the complexity of the revision task to local contexts. We show that global belief revision can be set up from revisions on the local contexts via a merging operator. Furthermore, we formalize a variant of the Ramsey-Test based on the idea of local contexts which connects conditional and propositional revision in a straightforward way. We extend the belief change methodology of c-revisions to strategic c-revisions which will serve as a proof of concept.


  1. 1.

    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50, 510–530 (1985). https://doi.org/10.2307/2274239

    MathSciNet  Article  Google Scholar 

  2. 2.

    Beierle, C., Eichhorn, C., Kern-Isberner, G.: Skeptical Inference Based on C-Representations and Its Characterization as a Constraint Satisfaction Problem. In: Gyssens, M., Simari, G.R. (eds.) Foundations of Information and Knowledge Systems - 9th International Symposium, FoIKS 2016, Linz, Proceedings, LNCS, vol. 9616, pp. 65–82. Springer (2016)

  3. 3.

    Beierle, C., Eichhorn, C., Kern-isberner, G.: A Transformation System for Unique Minimal Normal Forms of Conditional Knowledge Bases. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 14Th European Conference, ECSQARU 2017, Lugano, Proceedings, Lecture Notes in Computer Science, vol. 10369, pp. 236–245. Springer, Berlin (2017)

  4. 4.

    Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties of skeptical c-inference for conditional knowledge bases and its realization as a constraint satisfaction problem. Ann. Math. Artif. Intell. 83(3-4), 247–275 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Beierle, C., Eichhorn, C., Kutsch, S.: A practical comparison of qualitative inferences with preferred ranking models. KI – Künstliche Intell. 31(1), 41–52 (2017)

    Article  Google Scholar 

  6. 6.

    Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver. In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) Programming Languages: Implementations, Logics, and Programs, (PLILP’97), LNCS, vol. 1292, pp. 191–206. Springer (1997)

  7. 7.

    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89, 1–29 (1997)

    MathSciNet  Article  Google Scholar 

  8. 8.

    de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst. H. Poincaré 7(1), 1–68. English translation in Studies in Subjective Probability, Kyburg, H., Smokler, H.E. (eds.) 1974, 93–158, Wiley, New York (1937)

  9. 9.

    Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hansson, S.O.: Descriptor revision. Stud. Log. 102(5), 955–980 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Jeffrey, R.C.: The logic of decision. University of Chicago Press (1965)

  12. 12.

    Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change. Artif. Intell. 52, 263–294 (1991)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision. Springer, Lecture Notes in Artificial Intelligence LNAI 2087 (2001)

  14. 14.

    Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Ann. Math. Artif. Intell. 40(1-2), 127–164 (2004)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kern-Isberner, G.: Axiomatizing a qualitative principle of conditional preservation for iterated belief change. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, pp. 248–256. AAAI Press (2018)

  16. 16.

    Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax Splitting = Relevance + Independence: New Postulates for Nonmonotonic Reasoning from Conditional Belief Bases. In: KR-2020, pp. 560–571 (2020)

  17. 17.

    Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 1131–1137. ijcai.org, Melbourne (2017). https://doi.org/10.24963/ijcai.2017/157

  18. 18.

    Kern-Isberner, G., Huvermann, D.: What kind of independence do we need for multiple iterated belief change. J. Appl. Log. 22, 91–119 (2017). https://doi.org/10.1016/j.jal.2016.11.033

    MathSciNet  Article  Google Scholar 

  19. 19.

    Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo (1988)

  20. 20.

    Sauerwald, K., Haldimann, J., von Berg, M., Beierle, C.: Descriptor Revision for Conditionals: Literal Descriptors and Conditional Preservation. In: Schmid, U., Klu̇gl, F., Wolter, D. (eds.) KI 2020: Advances in Artificial Intelligence - 43rd German Conference on AI, Bamberg, Proceedings, LNCS, vol. 12325, pp. 204–218. Springer (2020)

  21. 21.

    Kern-Isberner, G.: Generalized ranking kinematics for iterated belief revision. In: Barták, R., Bell, E. (eds.) Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference, Originally to be held in North Miami Beach, pp. 587–592. AAAI Press, Florida (2020). https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18504

  22. 22.

    Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory, 26–37 (1980)

  23. 23.

    Spohn, W.: Ordinal Conditional Functions: a Dynamic Theory of Epistemic States. Springer, Netherlands (1988)

    Google Scholar 

  24. 24.

    Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applications. Oxford University Press (2014). http://ukcatalogue.oup.com/product/9780198705857.do

Download references


Open Access funding enabled and organized by Projekt DEAL.

Author information



Corresponding author

Correspondence to Meliha Sezgin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sezgin, M., Kern-Isberner, G. & Beierle, C. Ranking kinematics for revising by contextual information. Ann Math Artif Intell (2021). https://doi.org/10.1007/s10472-021-09746-2

Download citation


  • Iterated belief revision
  • Kinematics
  • Spohn’s ranking functions
  • Jeffrey’s rule

Mathematics Subject Classification (2010)

  • 68T30 Knowledge representation