A robust multiobjective model for the integrated berth and quay crane scheduling problem at seaside container terminals

Abstract

The ever increasing demand for container transportation has led to the congestion of maritime container terminals in the world. In this work, the two interrelated problems of berth and quay crane scheduling are considered in an integrated multiobjective mathematical model. A special character of this model is that the arrival times of vessels and the failure (working) times of quay cranes are not deterministic and can vary based on some scenarios. Hence, a robust model is devised for the problem having three objectives of minimising the deviations from target berthing locations and times as well as departure delays of all vessels. This robust optimisation seeks to minimise the value of the objectives regarding all the scenarios. An exact solution approach based on the 𝜖-constraint method by the Gurobi software is applied. Moreover, regarding the complexity of the problem, two Simulated Annealing (SA) based metaheuristics, namely a Multi-Objective Simulated Annealing (MOSA) and a Pareto Simulated Annealing (PSA) approach are adapted with a novel solution encoding scheme. The three methods are compared based on some multiobjective metrics and a statistical test. The advantage of the integration of berth and quay crane scheduling is examined as well.

References

  1. 1.

    Gurobi optimization, https://www.gurobi.com

  2. 2.

    UNCTAD: Review of maritime transport. In: United Nations conference on trade and development, p 2018 (2020)

  3. 3.

    Amine, K.: Multiobjective simulated annealing: Principles and algorithm variants. Adv. Oper. Res. 2019, 1–13 (2019)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bergmann, B., Hommel, G.: Improvements of general multiple test procedures for redundant systems of hypotheses. In: Multiple Hypothesenprüfung / Multiple Hypotheses Testing, pp. 100–115. Springer, Berlin (1988)

  6. 6.

    Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Box, G.E.P., Draper, N.R.: Response Surfaces, Mixtures, and Ridge Analyses, 2nd edn. Wiley-Interscience, Hoboken (2007)

    Book  Google Scholar 

  8. 8.

    Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., Lusby, R.: Models for the discrete berth allocation problem: a computational comparison. Transp. Res. E Logist. Transp. Rev. 47(4), 461–473 (2011)

    Article  Google Scholar 

  9. 9.

    Cahyono, R. T., Flonk, E. J., Jayawardhana, B.: Discrete-event systems modeling and the model predictive allocation algorithm for integrated berth and quay crane allocation. IEEE Trans. Intell. Transp. Syst. 21(3), 1321–1331 (2020)

    Article  Google Scholar 

  10. 10.

    Chankong, V., Making, Y. Y. Haimes.: Multiobjective Decision Theory and Methodology. Elsevier Science, New York (1983)

    Google Scholar 

  11. 11.

    Correcher, J. F., Alvarez-Valdes, R., Tamarit, J. M.: New exact methods for the time-invariant berth allocation and quay crane assignment problem. Eur. J. Oper. Res. 275(1), 80–92 (2019)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Correcher, J. F., Van den Bossche, T., Alvarez-Valdes, R., Vanden Berghe, G.: The berth allocation problem in terminals with irregular layouts. Eur. J. Oper. Res. 272(3), 1096–1108 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cunha, M., annealing, J. Marques.: A new multiobjective simulated algorithm—MOSA-GR: Application to the optimal design of water distribution networks. Water Resour. Res. 56(3), 2019wr025852 (2020)

    Article  Google Scholar 

  14. 14.

    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  15. 15.

    Elwany, M.H., Ali, I., Abouelseoud, Y.: A heuristics-based solution to the continuous berth allocation and crane assignment problem. Alexandria Eng. J. 52(4), 671–677 (2013)

    Article  Google Scholar 

  16. 16.

    Fatemi-Anaraki, S., Tavakkoli-Moghaddam, R., Abdolhamidi, D., Vahedi-Nouri, B.: Simultaneous waterway scheduling, berth allocation, and quay crane assignment: A novel matheuristic approach. Int. J. Prod. Res., 1–18 (2020)

  17. 17.

    Gutierrez, F., Lujan, E., Asmat, R., Vergara, E.: A fully fuzzy linear programming model for berth allocation and quay crane assignment. In: Advances in Artificial Intelligence - IBERAMIA 2018, pp. 302–313. Springer International Publishing (2018)

  18. 18.

    Hu, Q.-M., Hu, Z.-H., Du, Y.: Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels. Comput. Ind. Eng. 70, 1–10 (2014)

    Article  Google Scholar 

  19. 19.

    Idris, N., Zainuddin, Z.M.: A simultaneous integrated model with multiobjective for continuous berth allocation and quay crane scheduling problem. In: 2016 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), pp. 1–5 (2016)

  20. 20.

    Karafa, J., Golias, M.M., Ivey, S., Saharidis, G.K.D., Leonardos, N.: The berth allocation problem with stochastic vessel handling times. Int. J. Adv. Manuf. Technol. 65(1-4), 473–484 (2012)

    Article  Google Scholar 

  21. 21.

    Karam, A., Eltawil, A.B.: Functional integration approach for the berth allocation, quay crane assignment and specific quay crane assignment problems. Comput. Ind. Eng. 102, 458–466 (2016)

    Article  Google Scholar 

  22. 22.

    Kasm, O.A., Diabat, A., Cheng, T.C.E.: The integrated berth allocation, quay crane assignment and scheduling problem: mathematical formulations and a case study. Ann. Oper. Res. 291(1-2), 435–461 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 34, 975–986 (1984)

    MathSciNet  Article  Google Scholar 

  24. 24.

    König, E.: A review on railway delay management. Public Transp. 12, 335–361 (2020)

    Article  Google Scholar 

  25. 25.

    Kramer, A., Lalla-Ruiz, E., Iori, M., Voß, S.: Novel formulations and modeling enhancements for the dynamic berth allocation problem. Eur. J. Oper. Res. 278(1), 170–185 (2019)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Krimi, I., Todosijeviċ, I., Benmansour, R., Ratli, M., El Cadim, A.A., Aloullal, A.: Modelling and solving the multi-quays berth allocation and crane assignment problem with availability constraints. J. Glob. Optim. (2020)

  27. 27.

    Lalla-Ruiz, E., Voß, S.: POPMUSIC as a matheuristic for the berth allocation problem. Ann. Math. Artif. Intell. 76(1-2), 173–189 (2014)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Legato, P., Mazza, R. M., Gullì, D.: Integrating tactical and operational berth allocation decisions via simulation–optimization. Comput. Ind. Eng. 78, 84–94 (2014)

    Article  Google Scholar 

  29. 29.

    Li, Y., Chu, F., Zheng, F., Liu, M.: A bi-objective optimization for integrated berth allocation and quay crane assignment with preventive maintenance activities. IEEE Trans. Intell. Transp. Syst., 1–18 (2020)

  30. 30.

    Ma, S., Li, H., Zhu, N., Fu, C.: Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty. J. Sched. (2020)

  31. 31.

    Mattila, V., Virtanen, K., Hämäläinen, R.sP.: A simulated annealing algorithm for noisy multiobjective optimization. J. Multi-Criteria Decis. Anal. 20(5-6), 255–276 (2012)

    Article  Google Scholar 

  32. 32.

    Nguyen, S., Zhang, M, Johnston, M., Tan, K.C.: Hybrid evolutionary computation methods for quay crane scheduling problems (2020)

  33. 33.

    Nourmohammadzadeh, A., Hartmann, S.: An efficient simulated annealing for the integrated problem of berth allocation and quay crane assignment in seaside container terminals. In: 7th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2015), pp. 154–164 (2015)

  34. 34.

    Nourmohammadzadeh, A., Voß, S.: A pareto simulated annealing for the integrated problem of berth and quay crane scheduling at maritime container terminals with multiple objectives and stochastic arrival times of vessels. In: Kotsireas, I.S., Pardalos, P.M. (eds.) Learning and Intelligent Optimization, pp. 324–340. Springer International Publishing, Cham (2020)

  35. 35.

    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 (2008)

  36. 36.

    Rashidi, H., Tsang, E.P.K.: Novel constraints satisfaction models for optimization problems in container terminals. Appl. Math. Model. 37(6), 3601–3634 (2013)

    Article  Google Scholar 

  37. 37.

    Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11 (2015)

  38. 38.

    Rodriguez-Molins, M., Salido, M.A., Barber, F.: A GRASP-based metaheuristic for the berth allocation problem and the quay crane assignment problem by managing vessel cargo holds. Appl. Intell. 40(2), 273–290 (2013)

    Article  Google Scholar 

  39. 39.

    Saha, S., Bandyopadhyay, S.: A new multiobjective simulated annealing based clustering technique using symmetry. Pattern Recogn. Lett. 30(15), 1392–1403 (2009)

    Article  Google Scholar 

  40. 40.

    Serafini, P.: Simulated annealing for multi objective optimization problems. In: Multiple Criteria Decision Making, pp. 283–292. Springer, New York (1994)

  41. 41.

    Stahlbock, R., Voß, S.: Operations research at container terminals : a literature update. OR Spectr. 30, 1–52 (2008)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Tan, C., He, J., Wang, Y.: Berth allocation and quay crane assignment under uncertainties. In: Advances in Transdisciplinary Engineering. IOS Press (2020)

  43. 43.

    Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M., Taheri, F.: An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports. Comput. Ind. Eng. 56(1), 241–248 (2009)

    Article  Google Scholar 

  44. 44.

    Tekinalp, O., Karsli, G.: A new multiobjective simulated annealing algorithm. J. Glob. Optim. 39(1), 49–77 (2006)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Theofanis, S., Boile, M.: Empty marine container logistics: facts, issues and management strategies. GeoJournal 74(1), 51–65 (2008)

    Article  Google Scholar 

  46. 46.

    Ting, C.-J., Wu, K.-C., Chou, H.: Particle swarm optimization algorithm for the berth allocation problem. Expert Syst. Appl. 41(4), 1543–1550 (2014)

    Article  Google Scholar 

  47. 47.

    Türkoğulları, Y.B., Taşkın, Z.C., Aras, N., Altınel, İ.K.: Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals. Eur. J. Oper. Res. 254(3), 985–1001 (2016)

    MathSciNet  Article  Google Scholar 

  48. 48.

    Türkoğulları, Y.B., Taşkın, Z.C., Aras, N., Altınel, İ.K.: Optimal berth allocation and time-invariant quay crane assignment in container terminals. Eur. J. Oper. Res. 235(1), 88–101 (2014)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Wang, T., Du, Y., Fang, D., Li, Z.-C.: Berth allocation and quay crane assignment for the trade-off between service efficiency and operating cost considering carbon emission taxation. Transp. Sci. 54(5), 1307–1331 (2020)

    Article  Google Scholar 

  50. 50.

    Wawrzyniak, J., Drozdowski, M., Sanlaville, É.: Selecting algorithms for large berth allocation problems. Eur. J. Oper. Res. 283(3), 844–862 (2020)

    MathSciNet  Article  Google Scholar 

  51. 51.

    Xi, X., Liu, C., Lixin, M.: A bi-objective robust model for berth allocation scheduling under uncertainty. Transp. Res. E Logist. Transp. Rev. 106, 294–319 (2017)

    Article  Google Scholar 

  52. 52.

    Xu, D., Li, C.-L., Leung, J.Y.-T.: Berth allocation with time-dependent physical limitations on vessels. Eur. J. Oper. Res. 216(1), 47–56 (2012)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Zhen, L., Chang, D.-F.: A bi-objective model for robust berth allocation scheduling. Comput. Ind. Eng. 63(1), 262–273 (2012)

    Article  Google Scholar 

  54. 54.

    Zheng, F., Qiao, L., Liu, M.: An online model of berth and quay crane integrated allocation in container terminals. In: Combinatorial Optimization and Applications, pp. 721–730. Springer International Publishing (2015)

  55. 55.

    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abtin Nourmohammadzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nourmohammadzadeh, A., Voß, S. A robust multiobjective model for the integrated berth and quay crane scheduling problem at seaside container terminals. Ann Math Artif Intell (2021). https://doi.org/10.1007/s10472-021-09743-5

Download citation

Keywords

  • Berth and quay crane scheduling
  • Maritime container terminal
  • Robust optimisation