Skip to main content

Data driven design for online industrial auctions


Designing auction parameters for online industrial auctions is a complex problem due to highly heterogeneous items. Currently, online auctioneers rely heavily on their experts in auction design. The ability of predicting how well an auction will perform prior to the start comes in handy for auctioneers. If an item is expected to be a low-performing item, the auctioneer can take certain actions to influence the auction outcome. For instance, the starting selling price of the item can be modified, or the location where the item is displayed on the website can be changed to attract more attention. In this paper, we take a real-world industrial auction data set and investigate how we can improve upon the expert’s design using insights learned from data. More specifically, we first construct a classification model that predicts the expected performance of auctions. We propose a data driven auction design framework (called DDAD) that combines the expert’s knowledge with the learned prediction model, in order to find the best parameter values, i.e., starting price and display positions of the items, for a given new auction. The prediction model is evaluated, and the new design for several auctions is discussed and validated with the auction experts.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ariely, D., Simonson, I.: Buying, bidding, playing, or competing? Value assessment and decision dynamics in online auctions. J. Consum. Psychol. 13(1–2), 113–123 (2003)

    Article  Google Scholar 

  2. 2.

    Chan, N.H., Liu, W.W.: Modeling and forecasting online auction prices: a semiparametric regression analysis. J. Forecast. 36(2), 156–164 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cheema, A., Chakravarti, D., Sinha, A.R.: Bidding behavior in descending and ascending auctions. Mark. Sci. 31(5), 779–800 (2012)

    Article  Google Scholar 

  4. 4.

    Chow, V.: Predicting auction price of vehicle license plate with deep recurrent neural network. Expert Systems with Applications, pp. 113008 (2019)

  5. 5.

    Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, vol. 2, IJCAI’01, pp 973–978. Morgan Kaufmann Publishers Inc., San Francisco (2001)

  6. 6.

    Gabel, T., Riedmiller, M.: Adaptive reactive job-shop scheduling with learning agents. Int. J. Inf. Technol. Intell. Comput. 2(4), 1–30 (2008)

    Google Scholar 

  7. 7.

    Ghani, R.: Price prediction and insurance for online auctions. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp 411–418. ACM (2005)

  8. 8.

    Gurobi Optimization, L.: Gurobi optimizer reference manual. (2018)

  9. 9.

    Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3), 349–360 (2009)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Heyman, J.E., Orhun, Y., Ariely, D.: Auction fever: the effect of opponents and quasi-endowment on product valuations. J. interact. Mark. 18(4), 7–21 (2004)

    Article  Google Scholar 

  11. 11.

    Huyet, A.: Optimization and analysis aid via data-mining for simulated production systems. Eur. J. Oper. Res. 173(3), 827–838 (2006)

    MathSciNet  Article  Google Scholar 

  12. 12.

    IBM: IBM ILOG CPLEX Optimizer: (2018)

  13. 13.

    Kim, J.M., Jung, H.: Predicting bid prices by using machine learning methods. Appl. Econ. 51(19), 2011–2018 (2019)

    Article  Google Scholar 

  14. 14.

    Klemperer, P.: What really matters in auction design. J. Econ. Perspect. 16(1), 169–189 (2002)

    Article  Google Scholar 

  15. 15.

    Ku, G., Malhotra, D., Murnighan, J.K.: Towards a competitive arousal model of decision-making: a study of auction fever in live and internet auctions. Organ. Behav. Hum. Decis. Process. 96(2), 89–103 (2005)

    Article  Google Scholar 

  16. 16.

    Ku, G., Galinsky, A.D., Murnighan, J.K.: Starting low but ending high: a reversal of the anchoring effect in auctions. J. Personal. Social Psychol. 90(6), 975 (2006)

    Article  Google Scholar 

  17. 17.

    Liu, W.W., Liu, Y., Chan, N.H.: Modeling ebay price using stochastic differential equations. J. Forecast. 38(1), 63–72 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp 5472–5478 (2018)

  19. 19.

    Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017). Combining Constraint Solving with Mining and Learning

    MathSciNet  Article  Google Scholar 

  20. 20.

    Milgrom, P., Milgrom, P.R.: Putting Auction Theory to Work. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  21. 21.

    Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Pinker, E.J., Seidmann, A., Vakrat, Y.: Managing online auctions: current business and research issues. Manag. Sci. 49(11), 1457–1484 (2003)

    Article  Google Scholar 

  23. 23.

    Tang, P.: Reinforcement mechanism design. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp 5146–5150 (2017)

  24. 24.

    Van Heijst, D., Potharst, R., van Wezel, M.: A support system for predicting ebay end prices. Decis. Support Syst. 44(4), 970–982 (2008)

    Article  Google Scholar 

  25. 25.

    Verwer, S., Zhang, Y.: Revenue prediction in budget-constrained sequential auctions with complementarities. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp 1399–1400. International Foundation for Autonomous Agents and Multiagent Systems (2012)

  26. 26.

    Verwer, S., Zhang, Y.: Learning decision trees with flexible constraints and objectives using integer optimization. In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp 94–103. Springer (2017)

  27. 27.

    Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. In: 33rd AAAI Conference on Artificial Intelligence (2019)

  28. 28.

    Verwer, S., Zhang, Y., Ye, Q.C.: Auction optimization using regression trees and linear models as integer programs. Artif. Intell. 244, 368–395 (2017)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Wang, S., Jank, W., Shmueli, G.: Explaining and forecasting online auction prices and their dynamics using functional data analysis. J. Bus. Econ. Stat. 26(2), 144–160 (2008)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Xuefeng, L., Lu, L., Lihua, W., Zhao, Z.: Predicting the final prices of online auction items. Expert Syst. Appl. 31(3), 542–550 (2006)

    Article  Google Scholar 

  31. 31.

    Zhang, S., Jank, W., Shmueli, G.: Real-time forecasting of online auctions via functional k-nearest neighbors. Int. J. Forecast. 26(4), 666–683 (2010)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yingqian Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, Q.C., Rhuggenaath, J., Zhang, Y. et al. Data driven design for online industrial auctions. Ann Math Artif Intell 89, 675–691 (2021).

Download citation


  • Machine learning
  • Optimization
  • Auction design

Mathematics Subject Classification (2010)

  • 68T05
  • 90C11
  • 91B26