Skip to main content
Log in

Digital forensics and investigations meet artificial intelligence

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript


In the frame of Digital Forensic (DF) and Digital Investigations (DI), the “Evidence Analysis” phase has the aim to provide objective data, and to perform suitable elaboration of these data so as to help in the formation of possible hypotheses, which could later be presented as elements of proof in court. The aim of our research is to explore the applicability of Artificial Intelligence (AI) along with computational logic tools – and in particular the Answer Set Programming (ASP) approach — to the automation of evidence analysis. We will show how significant complex investigations, hardly solvable for human experts, can be expressed as optimization problems belonging in many cases to the \(\mathbb {P}\) or \(\mathbb {N}\mathbb {P}\) complexity classes. All these problems can be expressed in ASP. As a proof of concept, in this paper we present the formalization of realistic investigative cases via simple ASP programs, and show how such a methodology can lead to the formulation of tangible investigative hypotheses. We also sketch a design for a feasible Decision Support System (DSS) especially meant for investigators, based on artificial intelligence tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The Sciff abductive proof-procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005: Advances in Artificial Intelligence, 9th Congress of the Italian Association for Artificial Intelligence, Proceedings, volume 3673 of Lecture Notes in Computer Science, pp. 135–147. Springer (2005)

  2. Alferes, J.J.: Preserving strong equivalence while forgetting. In: Logics in Artificial Intelligence - 14Th European Conference, JELIA 2014, Proceedings, Volume 8761 of Lecture Notes in Computer Science, pp. 412–425. Springer (2014)

  3. ASP. Answer set programming solvers online (incomplete list), 2016.,,,,,,

  4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Informatica 20, 207–226 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borchert, P., Anger, C., Schaub, T., Truszczynski, M.: Towards systematic benchmarking in answer set programming the dagstuhl initiative. In: LPNMR, volume 2923 of Lecture Notes in Computer Science, pp. 3–7. Springer (2004)

  7. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, volume 6565 of Lecture Notes in Computer Science, pp. 233–258. Springer (2011)

  8. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) IJCAI 2011, Proc. of the 22nd Intl. Joint Conf. on Artificial Intelligence, pp. 786–791. IJCAI/AAAI (2011)

  9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance . Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  10. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive reasoning in dynamic environments. In: Schaub, T. (ed.) ECAI 2014, Proc. of the 21st European Conf. on Artificial Intelligence. IJCAI/AAAI (2014)

  11. Cabalar, P.: Causal logic programming. In: Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, Volume 7265 of Lecture Notes in Computer Science, pp. 102–116. Springer (2012)

  12. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: KR. Citeseer (2014)

  13. Casey, E.: Handbook of Digital Forensics and Investigation. Elsevier, Amsterdam (2009)

    Google Scholar 

  14. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet. Academic press, Cambridge (2011)

    Google Scholar 

  15. Costantini, S.: Contributions to the stable model semantics of logic programs with negation. Theor. Comput. Sci. 149(2), 231–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Costantini, S.: On the existence of stable models of non-stratified logic programs. TPLP 6(1-2), 169–212 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Costantini, S.: Ace: a flexible environment for complex event processing in logical agents. In: Baresi, L., Baldoni, M., Dastani, M. (eds.) Engineering Multi-Agent Systems, Third International Workshop, EMAS 2015, Revised Selected Papers, volume 9318 of Lecture Notes in Computer Science, Springer (2015)

  18. Costantini, S.: Knowledge acquisition via non-monotonic reasoning in distributed heterogeneous environments. In: Truszczyński, M., Ianni, G., Calimeri, F. (eds.) 13th Int. Conf. on Logic Programming and Nonmonotonic Reasoning LPNMR 2013. Proc., volume 9345 of Lecture Notes in Computer Science Springer (2015)

  19. Costantini, S., D’Antona, O.M., Provetti, A.: On the equivalence and range of applicability of graph-based representations of logic programs. Inf. Process. Lett. 84 (5), 241–249 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Costantini, S., DeGasperis, G.: Exchanging data and ontological definitions in multi-agent-contexts systems. In: Paschke, A., Fodor, P., Giurca, A., Kliegr, T. (eds.) RuleMLChallenge track, Proceedings, CEUR Workshop Proceedings. (2015)

  21. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  22. Delgrande, J.P., Wang, K.: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, january 25-30, 2015, austin, texas, USA. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1482–1488. AAAI Press (2015)

  23. Deswal, S., Singhrova, A.: Application of graph theory in communication networks. International Journal of Application or Innovation in Engineering and Management 1 (2012)

  24. Dovier, A., Formisano, A.: Programmazione Dichiarativa in Prolog, CLP, ASP, e CCP. free, 2008. Available (in Italian) at

  25. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif Intell. 172(14), 1644–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Emerson, E.A.: Temporal and Modal Logic. InL: Handbook of theoretical computer science, vol. B. MIT Press (1990)

  27. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)

    Article  Google Scholar 

  28. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation. Chapter 7, pp 285–316. Elsevier, Amsterdam (2007)

  29. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  30. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proc. of the 5th Intl. Conf. and Symposium on Logic Programming, pp. 1070–1080. MIT Press (1988)

  31. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. N. Gener. Comput. 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  32. Governatori, G.: Un modello formale per il ragionamento giuridico. PhD thesis, Dottorato Di Ricerca in Informatica Giuridica E Diritto Dell’informatica - CIRFID Università Di Bologna, 1996. Supervisors: Professors Alberto Artosi and Maurizio Matteuzzi

  33. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and weak permissions in defeasible logic. J. Philos. Log. 42(6), 799–829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kakas, A.C., Toni, F.: Computing argumentation in logic programming. J. Log Comput. 9(4), 515–562 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI, vol. 92, pp. 359–363. Citeseer (1992)

  37. Kjellerstrand, H.: Hidato. Available at (2015)

  38. Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3-4), 275–296 (1996)

    Article  Google Scholar 

  39. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)

    Article  Google Scholar 

  40. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to systems and applications. In: Baral, C., Brewka, G., Schlipf, J. (eds.) Logic Programming and Nonmonotonic Reasoning, 9th Intl. Conference, LPNMR 2007. Springer (2007)

  41. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2, 526–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lifschitz, V.: Action languages, answer sets, and planning. In: The Logic Programming Paradigm, pp. 357–373. Springer (1999)

  43. Lifschitz, V.: Twelve definitions of a stable model. In: de la Banda, M.G., Pontelli, E. (eds.) Proc. of the 24th Intl. Conference on Logic Programming, volume 5366 of LNCS, pp. 37–51. Springer (2008)

  44. Lucatuorto, P.L.M.: Intelligenza artificiale e diritto: le applicazioni giuridiche dei sistemi esperti. Ciberspazio e Diritto 7(2), 103–125 (2006)

    Google Scholar 

  45. Maratea, M., Pulina, L., Ricca, F.: Multi-engine ASP solving with policy adaptation. J. Log. Comput. 25(6), 1285–1306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm, pp. 375–398. Springer (1999)

  47. Montali, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.: Evaluating compliance: from LTL to abductive logic programming. In: Ancona, D., Maratea, M., Mascardi, V. (eds.) Proceedings of the 30th Italian Conference on Computational Logic, volume 1459 of CEUR Workshop Proceedings, pp. 101–116. (2015)

  48. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell., Springer 25(3-4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Olivieri, R.: Digital Forensics meets Complexity Theory and Artificial Intelligence: Towards Automated Generation of Investigation Hypothesis. PhD thesis, Dottorato di ricerca in Ingegneria e Scienze dell’Informazione, Università degli Studi dell’Aquila. Supervisor: Prof. Stefania Costantini. (2016)

  50. Pearce, D.: A new logical characterization of stable models and answer sets. In: Non-Monotonic Extensions of Logic Programming, Number 1216 in LNAI, pp. 55–70. Springer (1997)

  51. Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. In: Proc. of ECAI04, 16th Europ. Conf. on Art. Intell. pp 388–390 (2004)

  52. Pnueli, A.: The temporal logic of programs. In: Proc. Of FOCS, 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)

  53. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)

    Google Scholar 

  54. Riguzzi, F., Bellodi, E., Zese, R., Cota, G., Lamma, E.: A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics. Int. J. Approx. Reason. 80, 313–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rotolo, A., Governatori, G., Sartor, G.: Deontic defeasible reasoning in legal interpretation: two options for modelling interpretive arguments. In: Proceedings of the 15th International Conference on Artificial Intelligence and Law, ICAIL 2015, June 8-12, 2015, pp. 99–108. San Diego (2015)

  56. Smith, C., Calardo, E., Rotolo, A., Sartor, G.: Legal responsibility for the acts of others a logical analysis. In: Rules on the Web. From Theory to Applications - 8Th International Symposium, RuleML 2014, Co-Located with the 21St European Conference on Artificial Intelligence, ECAI 2014, August 18-20, 2014. Proceedings, pp. 329–338, Prague (2014)

  57. Truszczyński, M: Logic programming for knowledge representation. In: Dahl, V., Niemelä, I. (eds.) Logic Programming, 23rd Intl. Conference, ICLP 2007, pp 76–88. Springer, Berlin (2007)

  58. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Proceedings of the 2001 Conf. on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2001, number 2031 in LNCS, pp. 1–22. Springer (2001)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefania Costantini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costantini, S., De Gasperis, G. & Olivieri, R. Digital forensics and investigations meet artificial intelligence. Ann Math Artif Intell 86, 193–229 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2010)