Skip to main content
Log in

A polynomial relational class of binary CSP

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Finding a solution to a constraint satisfaction problem (CSP) is known to be an NP-hard task. Considerable effort has been spent on identifying tractable classes of CSP, in other words, classes of constraint satisfaction problems for which there are polynomial time recognition and resolution algorithms. In this article, we present a relational tractable class of binary CSP. Our key contribution is a new ternary operation that we name mjx. We first characterize mjx-closed relations which leads to an optimal algorithm to recognize such relations. To reduce space and time complexity, we define a new storage technique for these relations which reduces the complexity of establishing a form of strong directional path consistency, the consistency level that solves all instances of the proposed class (and, indeed, of all relational classes closed under a majority polymorphism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessiere, C., Carbonnel, C., Hebrard, E., Katsirelos, G., Detecting, T.W.: Detecting and exploiting subproblem tractability. In: Rossi, F. (ed.) IJCAI 2013 Proceedings of the 23rd International Joint Conference on Artificial Intelligence. IJCAI/AAAI, Beijing (2013)

  2. Bulatov, A.A., Jeavons, P.G., Krokhin, A.A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency methods. J. ACM 61(1), 3 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barto, L., Kozik, M., Willard, R.: Near unanimity constraints have bounded pathwidth duality. In: LICS, pp. 125–134. IEEE (2012)

  5. Bessière, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: A survey. Constraints 21(2), 115–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Dalmau, V., Grußien, B.: Arc consistency and friends. J. Log. Comput. 23(1), 87–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, D.A., Jeavons, P.G.: The complexity of constraint languages. In: Rossi, F, van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp 245–280. Elsevier, Amsterdam (2006)

  9. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination. Artif. Intell. 174 (9–10), 570–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooper, M.C., Mouelhi, A., El, Terrioux, C., Zanuttini, B.: On broken triangles. In: O’Sullivan, B. (ed.) Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12 Proceedings, Volume 8656 of Lecture Notes in Computer Science, pp 9–24. Springer, Berlin (2014)

  11. Cooper, M.C.: An optimal k-consistency algorithm. Artif. Intell. 41(1), 89–95 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deville, Y., Barette, O., Van Hentenryck, P.: Constraint satisfaction over connected row convex constraints. Artif. Intell. 109(1-2), 243–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    MATH  Google Scholar 

  14. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif Intell. 34(1), 1–38 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32 (4), 755–761 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM. J. Comput. 28(1), 57–104 (1998)

    MATH  Google Scholar 

  17. Green, M.J., Cohen, D.A.: Domain permutation reduction for constraint satisfaction problems. Artif. Intell. 172(8-9), 1094–1118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artif. Intell. 79(2), 327–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeavons, P., Cohen, D.A., Cooper, M.C.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200, 185–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naanaa, W: Unifying and extending hybrid tractable classes of CSPs. J. Exp. Theor. Artif Intell. 25(4), 407–424 (2013)

    Article  Google Scholar 

  24. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Rossi, F, van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Volume 2 of Foundations of Artificial Intelligence, pp 169–208. Elsevier, Amsterdam (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Jguirim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jguirim, W., Naanaa, W. & Cooper, M.C. A polynomial relational class of binary CSP. Ann Math Artif Intell 83, 1–20 (2018). https://doi.org/10.1007/s10472-017-9566-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-017-9566-6

Keywords

Mathematics Subject Classification (2010)

Navigation