Conformant planning as a case study of incremental QBF solving

  • Uwe Egly
  • Martin Kronegger
  • Florian Lonsing
  • Andreas Pfandler
Open Access
Article

Abstract

We consider planning with uncertainty in the initial state as a case study of incremental quantified Boolean formula (QBF) solving. We report on experiments with a workflow to incrementally encode a planning instance into a sequence of QBFs. To solve this sequence of successively constructed QBFs, we use our general-purpose incremental QBF solver DepQBF. Since the generated QBFs have many clauses and variables in common, our approach avoids redundancy both in the encoding phase as well as in the solving phase. We also present experiments with incremental preprocessing techniques that are based on blocked clause elimination (QBCE). QBCE allows to eliminate certain clauses from a QBF in a satisfiability preserving way. We implemented the QBCE-based techniques in DepQBF in three variants: as preprocessing, as inprocessing (which extends preprocessing by taking into account variable assignments that were fixed by the QBF solver), and as a novel dynamic approach where QBCE is tightly integrated in the solving process. For DepQBF, experimental results show that incremental QBF solving with incremental QBCE outperforms incremental QBF solving without QBCE, which in turn outperforms nonincremental QBF solving. For the first time we report on incremental QBF solving with incremental QBCE as inprocessing. Our results are the first empirical study of incremental QBF solving in the context of planning and motivate its use in other application domains.

Keywords

Quantified Boolean formulas (QBFs) Conformant planning Incremental solving Preprocessing Blocked clause elimination 

Mathematics Subject Classifications (2010)

68T15 68T20 68T27 

References

  1. 1.
    Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for incremental SAT solving with assumptions: Application to MUS extraction. In: Proc. SAT 2013, LNCS, vol. 7962, pp. 309–317. Springer (2013)Google Scholar
  2. 2.
    Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artif. Intell. 122(1-2), 241–267 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proc. STACS 2015, LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  5. 5.
    Biere, A.: Resolve and expand. In: Proc. SAT 2004, LNCS, vol. 3542, pp. 59–70. Springer (2004)Google Scholar
  6. 6.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Proc. CADE 2011, LNCS, vol. 6803, pp. 101–115. Springer (2011)Google Scholar
  7. 7.
    Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1-2), 281–300 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Bubeck, U., Kleine Buning̈, H.: Bounded universal expansion for preprocessing QBF. In: Proc. SAT 2007, LNCS, vol. 4501, pp. 244–257. Springer (2007)Google Scholar
  9. 9.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. J. Autom. Reas. 28(2), 101–142 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cashmore, M., Fox, M., Giunchiglia, E.: Planning as quantified Boolean formula. In: Proc. ECAI, FAIA, vol. 242, pp. 217–222. IOS Press (2012)Google Scholar
  11. 11.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. In: Proc. AISC 2014, LNCS, pp. 120–131. Springer (2014)Google Scholar
  14. 14.
    Giunchiglia, E., Marin, P.: Narizzano, M.: sQueezeBF: An effective preprocessor for QBFs based on equivalence reasoning. In: Proc. SAT 2010, LNCS, vol. 6175, pp. 85–98. Springer (2010)Google Scholar
  15. 15.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Proc. IJCAI 2011, pp. 546–553. AAAI Press (2011)Google Scholar
  17. 17.
    Heule, M., Jȧrvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)MathSciNetMATHGoogle Scholar
  18. 18.
    Heule, M., Seidl, M., Biere, A.: Efficient extraction of skolem functions from QRAT proofs. In: Proc. FMCAD 2014, pp. 107–114. IEEE (2014)Google Scholar
  19. 19.
    Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Proc. IJCAR 2014, LNCS, vol. 8562, pp. 91–106. Springer (2014)Google Scholar
  20. 20.
    Heyman, T., Smith, D., Mahajan, Y., Leong, L.: Abu-Haimed, H.: Dominant controllability check using QBF-solver and netlist optimizer. In: Proc. SAT 2014, LNCS, vol. 8561, pp. 227–242. Springer (2014)Google Scholar
  21. 21.
    Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: A new approach. Artif. Intell 170(6–7), 507–541 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Janota, M., Grigore, R.: Marques-Silva, J.: On QBF proofs and preprocessing. In: Proc. LPAR 2013, LNCS, vol. 8312, pp. 473–489. Springer (2013)Google Scholar
  23. 23.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. In: Proc. SAT 2012, LNCS, vol. 7317, pp. 114–128. Springer (2012)Google Scholar
  24. 24.
    Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Jȧrvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: Proc. SAT 2010, LNCS, vol. 6175, pp. 340–345. Springer (2010)Google Scholar
  26. 26.
    Jȧrvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. IJCAR 2012, LNCS, vol. 7364, pp. 355–370. Springer (2012)Google Scholar
  27. 27.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inform. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as a benchmark for QBF-solvers. In: Proc. QBF 2013, pp. 1–5. http://fmv.jku.at/qbf2013/reportQBFWS13.pdf (2013)
  29. 29.
    Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 96–97, 149–176 (1999)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Lagniez, J.M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: Proc. SAT 2013, LNCS, vol. 7962, pp. 276–292. Springer (2013)Google Scholar
  31. 31.
    Letz, R.: Lemma and model caching in decision procedures for quantified Boolean formulas. In: Proc. TABLEAUX 2002, LNCS, vol. 2381, pp. 160–175. Springer (2002)Google Scholar
  32. 32.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Proc. LPAR 2015, LNCS, vol. 9450, pp. 418–433. Springer (2015)Google Scholar
  33. 33.
    Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Proc. SAT 2008, LNCS, vol. 4996, pp. 196–210. Springer (2008)Google Scholar
  34. 34.
    Lonsing, F., Egly, U.: Incremental QBF solving. In: Proc. CP 2014, LNCS, vol. 8656, pp. 514–530. Springer (2014)Google Scholar
  35. 35.
    Lonsing, F., Egly, U.: Incremental QBF solving by DepQBF. In: Proc. ICMS 2014, LNCS, vol. 8592, pp. 307–314. Springer (2014)Google Scholar
  36. 36.
    Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified Boolean formulas via QBF pseudo unit propagation. In: Proc. SAT 2013, LNCS, vol. 7962, pp. 100–115. Springer (2013)Google Scholar
  37. 37.
    Marin, P., Miller, C., Becker, B.: Incremental QBF preprocessing for partial design verification - (poster presentation). In: Proc. SAT 2012, LNCS, vol. 7317, pp. 473–474. Springer (2012)Google Scholar
  38. 38.
    Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs using incremental QBF solving. In: Proc. DATE 2012, pp. 623–628. IEEE (2012)Google Scholar
  39. 39.
    Miller, C., Marin, P., Becker, B.: Verification of partial designs using incremental QBF. AI Commun. 28(2), 283–307 (2015)MathSciNetGoogle Scholar
  40. 40.
    Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Proc. SAT 2014, LNCS, vol. 8561, pp. 206–218. Springer (2014)Google Scholar
  41. 41.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF - (tool presentation). In: Proc. SAT 2012, LNCS, vol. 7317, pp. 430–435. Springer (2012)Google Scholar
  42. 42.
    Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning problems with bounded width. J. Artif. Intell. Res. 35, 623–675 (2009)MathSciNetMATHGoogle Scholar
  43. 43.
    Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: Proc. AAAI 2007, pp. 1045–1050. AAAI Press (2007)Google Scholar
  44. 44.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reas. 42(1), 77–97 (2009)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Proc. CP 2006, LNCS, vol. 4204, pp. 514–529. Springer (2006)Google Scholar
  46. 46.
    Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean formulas. In: Proc. DATE 2014, pp. 1–6. IEEE (2014)Google Scholar
  47. 47.
    Smith, D.E., Weld, D.S.: Conformant graphplan. In: Proc. AAAI/IAAI 1998, pp. 889–896. AAAI Press / The MIT Press (1998)Google Scholar
  48. 48.
    Van Gelder, A., Wood, S.B., Lonsing, F.: Extended failed-literal preprocessing for quantified Boolean formulas. In: Proc. SAT 2012, LNCS, vol. 7317, pp. 86–99. Springer (2012)Google Scholar
  49. 49.
    Yu, Y., Malik, S.: Validating the result of a quantified Boolean formula (QBF) solver: theory and practice. In: Proc. ASP-DAC 2005, pp. 1047–1051. ACM Press (2005)Google Scholar
  50. 50.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Proc. CP 2002, LNCS, vol. 2470, pp. 200–215. Springer (2002)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Uwe Egly
    • 1
  • Martin Kronegger
    • 1
  • Florian Lonsing
    • 1
  • Andreas Pfandler
    • 1
    • 2
  1. 1.Institute of Information SystemsTU WienViennaAustria
  2. 2.School of Economic DisciplinesUniversity of SiegenSiegenGermany

Personalised recommendations