Assessing the epistemological relevance of Dung-style argumentation theories

  • Gregor BetzEmail author


In a seminal paper Phan Minh Dung (Artif. Intell. 77(2), 321–357, 1995) developed the theory of abstract argumentation frameworks (AFs), which has remained a pivotal point of reference for research in AI and argumentation ever since. This paper assesses the merits of Dung’s theory from an epistemological point of view. It argues that, despite its prominence in AI, the theory of AFs is epistemologically flawed. More specifically, abstract AFs don’t provide a normatively adequate model for the evaluation of rational, multi-proponent controversy. Different interpretations of Dung’s theory may be distinguished. Dung’s intended interpretation collides with basic principles of rational judgement suspension. The currently prevailing knowledge base interpretation ignores relevant arguments when assessing proponent positions in a debate. It is finally suggested that abstract AFs be better understood as a paraconsistent logic, rather than a theory of real argumentation.


Argumentation Argumentation frameworks Normativity Rationality 

Mathematics Subject Classifications (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourron, C.E., Peter, G., Makinson, D.: On the logic of theory change - partial meet contraction and revision functions. J. Symbo. Log. 50(2), 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amgoud, L., Besnard, P.: A formal analysis of logic-based argumentation systems. In: Deshpande, A., Hunter, A. (eds.) Scalable Uncertainty Management, Lecture Notes in Computer Science, pp 42–55. Springer, Berlin, Heidelberg (2010)Google Scholar
  3. 3.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation frameworks. Int. J. Autom. Reason. 29(2), 125–169 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Atkinson, K., Bench-Capon, T., Cartwright, D., Wyner, A.: Semantic models for policy deliberations. In: Ashley, K.D., Van Engers, T.M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Law (ICAIL 2011), pp 81–90. ACM, New York (2011)Google Scholar
  6. 6.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp 25–44. Springer, Dordrecht, New York (2009)Google Scholar
  7. 7.
    Bench-Capon, T.: Agreeing to differ: Modelling persuasive dialogue between parties with different values. Inf. Log. 22(2), 231–245 (2003)MathSciNetGoogle Scholar
  8. 8.
    Bench-Capon, T., Atkinson, K.: Abstract argumentation and values. In: Rahwan, I, Simari, G (eds.) Argumentation in Artificial Intelligence, pp 45–64. Springer, Dordrecht, New York (2009)Google Scholar
  9. 9.
    Bench-Capon, T., Dunne, P.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge, MA (2008)CrossRefGoogle Scholar
  11. 11.
    Betz, G.: Debate Dynamics: How Controversy Improves Our Beliefs. Synthese Library. Springer, Dordrecht (2012)Google Scholar
  12. 12.
    Betz, G., Cacean, S.: Ethical Aspects of Climate Engineering. KIT Scientific Publishing, Karlsruhe (2012)Google Scholar
  13. 13.
    Betz, G., Cacean, S.: The Moral Controversy About Climate Engineering - An Argument Map, Version 2012-02-13. KIT, Karlsruhe (2012)Google Scholar
  14. 14.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(1–2), 63–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brewka, G., Gordon, T.F.: Carneades and abstract dialectical frameworks: A reconstruction. Comput. Models Argument: Proc. Comma 2010(216), 3–12 (2010)Google Scholar
  16. 16.
    Brewka, G., Woltran, S.: Abstract dialectic frameworks. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceeding of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, pp 102–111. AAAI Press, Palo Alto, California (2010)Google Scholar
  17. 17.
    Brewka, G., Dunne, P.E., Woltran, S.: Relating the semantics of abstract dialectical frameworks and standard afs. In: Walsh, T. (ed.) IJCAI’11 Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 2, pp 780–785. AAAI Press, Palo Alto, California (2011)Google Scholar
  18. 18.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cayrol, C., Lagasquie-Schiex, M.-C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 8th European Conference, ECSQARU 2005, Barcelona, Spain, July 6-8, 2005. Proceedings, pp 378–389. Springer, Berlin / Heidelberg (2005)Google Scholar
  20. 20.
    Cayrol, C., Lagasquie-Schiex, M.-C.: Bipolar abstract argumentation systems. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp 65–84. Springer, Dordrecht, New York (2009)Google Scholar
  21. 21.
    Carlos, I.C., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM Comput. Surv. 32(4), 337–383 (2000)CrossRefGoogle Scholar
  22. 22.
    Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.-C., Marquis, P.: On the merging of Dung’s argumentation systems. Artif. Intell. 171 (10–15), 730–753 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    De ArgumentenFabriek: Argument map shale gas production in EU member states. Technical report, De ArgumentenFabriek, 2012.
  24. 24.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Engelhardt, H.T., Caplan, A.L.: Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  26. 26.
    Friedman, J.: Suspended judgment. Philos. Stud. 162(2), 165–181 (2013)CrossRefGoogle Scholar
  27. 27.
    Gijzel, B.V., Prakken, H.: Relating Carneades with abstract argumentation via the ASPIC+ framework for structured argumentation. Argument Comput. 3(1), 21–47 (2012)CrossRefGoogle Scholar
  28. 28.
    Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of proof. Artif. Intell. 171(10–15), 875–896 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gärdenfors, P.: Knowledge in Flux : Modeling the Dynamics of Epistemic States. MIT Press, Cambridge, Mass. (1988)zbMATHGoogle Scholar
  30. 30.
    Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database Updating, vol. 11 of Applied Logic Series. Kluwer, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  31. 31.
    Hansson, S.O.: Logic of belief revision. In: Zalta, E.N (ed.) The Stanford Encyclopedia of Philosophy. Spring 2009 edition (2009)Google Scholar
  32. 32.
    Horn, R.: Mapping Great Debates: Can Computers Think? 7 Maps and Handbook. Macro VU, Bainbridge Island (1998)Google Scholar
  33. 33.
    Kitcher, P.: The Advancement of Science: Science without Legend, Objectivity without Illusions. Oxford University Press, New York (1993)Google Scholar
  34. 34.
    Lumer, C.: The epistemological theory of argument - how and why? Inf. Log. 25 (3), 213–242 (2005)MathSciNetGoogle Scholar
  35. 35.
    Machamer, P., Pera, M., Baltas, A.: Scientific Controversies: Philosophical and Historical Perspectives. Oxford University Press, New York (2000)Google Scholar
  36. 36.
    Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pollock. J.L.: Defeasible reasoning. Cogn. Sci. 11(4), 481–518 (1987)CrossRefGoogle Scholar
  38. 38.
    Pollock, J.L.: Cognitive Carpentry. A Blueprint for How to Build A Person. MIT Press, Cambridge, Mass. (1995)Google Scholar
  39. 39.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2011)CrossRefGoogle Scholar
  40. 40.
    Prakken, H.: An overview of formal models of argumentation and their application in philosophy. Stud. Log. 4(1), 65–86 (2011)Google Scholar
  41. 41.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Artif. Intell. Law 20(1), 57–82 (2012)CrossRefGoogle Scholar
  42. 42.
    Prakken, H., Horty, J.: An appreciation of John Pollock’s work on the computational study of argument. Argument Comput. 3(1), 1–19 (2012)CrossRefGoogle Scholar
  43. 43.
    Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp 219–318. Kluwer, Dordrecht, 2nd edn. (2001)Google Scholar
  44. 44.
    Rahwan, I., Larson, K.: Argumentation and game theory. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp 321–339. Springer, Dordrecht, New York (2009)Google Scholar
  45. 45.
    Rahwan, I., Simari, G.: Argumentation in Artificial Intelligence. Springer, Dordrecht, New York (2009)Google Scholar
  46. 46.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rescher, N.: The Coherency Theory of Truth. Oxford University Press, Oxford (1973)Google Scholar
  48. 48.
    Rescher, N.: Dialectics. A Controversy-Oriented Approach to the Theory of Knowledge. State University of New York Press, Albany (1977)Google Scholar
  49. 49.
    Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory Decis. 1(2), 179–217 (1970)CrossRefzbMATHGoogle Scholar
  50. 50.
    Rudwick, M.J.S.: The Great Devonian Controversy: The Shaping of Scientific Knowledge Among Gentlemanly Specialists. University of Chicago Press, Chicago (1985)CrossRefGoogle Scholar
  51. 51.
    Sather, T.: Pros and Cons: A Debater’s Handbook. Routledge, London, New York (1999)Google Scholar
  52. 52.
    Seselja, D., Stra βer, C.: Abstract argumentation and explanation applied to scientific debates. Synthese 190(12), 2195–2217 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Simon, H.A.: Models of Bounded Rationality. MIT Press, Cambridge, Mass. (1982)Google Scholar
  54. 54.
    Spohn, W.: A brief comparison of Pollock’s defeasible reasoning and ranking functions. Synthese 131(1), 39–56 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Spohn, W.: The Laws of Belief : Ranking Theory and Its Philosophical Applications. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology, Institute of PhilosophyKarlsruheGermany

Personalised recommendations