Advertisement

On the hardness of bribery variants in voting with CP-nets

  • Britta DornEmail author
  • Dominikus Krüger
Article

Abstract

We continue previous work by Mattei et al. (Ann. Math. Artif. Intell. 1042 68(1–3), 135–160 2013) in which they study the computational complexity of bribery schemes when voters have conditional preferences modeled as CP-nets. For most of the cases they considered, they showed that the bribery problem is solvable in polynomial time. Some cases remained open—we solve several of them and extend the previous results to the case that voters are weighted. Additionally, we consider negative (weighted) bribery in CP-nets, when the briber is not allowed to pay voters to vote for his preferred candidate.

Keywords

Computational Social Choice Voting Bribery CP-nets 

Mathematics Subject Classifications (2010)

91B14 91B10 68Q25 91B12 68Q17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and Applications. Prentice Hall (1993)Google Scholar
  2. 2.
    Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Handbook of Approval Voting, Studies in Choice and Welfare, 1st edn., chap. 10, pp. 199–251. Springer (2010)Google Scholar
  3. 3.
    Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in elections based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010). doi: 10.1016/j.jcss.2010.04.002 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boutilier, C., Brafman, R., Geib, C., Poole, D.: A constraint-based approach to preference elicitation and decision making. In: AAAI Spring Symposium on Qualitative Decision Theory, pp. 19–28. Citeseer (1997)Google Scholar
  5. 5.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004). doi: 10.1613/jair.1234 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 71–80. Morgan Kaufmann (1999). http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=155&proceeding_id=15
  7. 7.
    Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Multiagent Systems, pp. 213–283. MIT Press (2013)Google Scholar
  8. 8.
    Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On complexity of lobbying in multiple referenda. Rev. Econ. Des. 11(3), 217–224 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Conitzer, V., Lang, J., Xia, L.: Hypercubewise preference aggregation in multi-issue domains. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 158–163. AAAI Press (2011). http://ijcai.org/papers11/Papers/IJCAI11-038.pdf
  10. 10.
    Conitzer, V., Walsh, T.: Barriers to manipulation. In: Handbook of Computational Social Choice. Cambridge University Press (2015). To appearGoogle Scholar
  11. 11.
    Conitzer, V., Xia, L.: Paradoxes of multiple elections: an approximation approach. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning, pp. 179–187. AAAI Press (2012). http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4541
  12. 12.
    Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. Algorithmica 64(1), 126–151 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  15. 15.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972). doi: 10.1145/321694.321699 CrossRefzbMATHGoogle Scholar
  16. 16.
    Elkind, E., Faliszewski, P. Approximation algorithms for campaign management. Internet and Network Economics, pp. 473–482 (2010)Google Scholar
  17. 17.
    Elkind, E., Faliszewski, P., Slinko, A. Swap bribery. Algorithmic Game Theory, pp. 299–310 (2009)Google Scholar
  18. 18.
    Eppstein, D.: $k$-best enumeration. CoRR (2014). arXiv:1412.5075
  19. 19.
    Faliszewski, P.: Nonuniform bribery. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1569–1572. IFAAMAS (2008). doi: 10.1145/1402821.1402927
  20. 20.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: The complexity of bribery in elections. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 6, pp. 641–646. AAAI Press (2006). http://www.aaai.org/Library/AAAI/2006/aaai06-102.php
  21. 21.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in elections? J. Artif. Intell. Res. 35(2), 485–532 (2009). doi: 10.1613/jair.2676 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010). doi: 10.1145/1839676.1839696 CrossRefGoogle Scholar
  23. 23.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35(1), 275–341 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Copeland voting: ties matter. In: Proceeding of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 983–990. IFAAMAS (2008). doi: 10.1145/1402298.1402359
  25. 25.
    Faliszewski, P., Hemaspaandra, L., Hemaspaandra, E., Rothe, J.: A richer understanding of the complexity of election systems. In: Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, 1st edn., chap. 14, pp. 375–406. Springer (2009)Google Scholar
  26. 26.
    Faliszewski, P., Procaccia, A.D.: AI’s war on manipulation: are we winning? AI Mag. 31(4), 53–64 (2010). http://www.aaai.org/ojs/index.php/aimagazine/article/ view/2314 Google Scholar
  27. 27.
    Faliszewski, P., Rothe, J.: Control and bribery. In: Handbook of Computational Social Choice. Cambridge University Press (2015). To appearGoogle Scholar
  28. 28.
    Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, New York (2006)Google Scholar
  29. 29.
    Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3), 399–404 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman and Company, New York (1979)zbMATHGoogle Scholar
  31. 31.
    Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–103. Springer (1972)Google Scholar
  32. 32.
    Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. In: Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)Google Scholar
  33. 33.
    Lang, J.: Vote and aggregation in combinatorial domains with structured preferences. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1366–1371 (2007). http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-220.pdf
  34. 34.
    Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009). doi: 10.1016/j.mathsocsci.2008.12.010 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lawler, E.L.: A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Manag. Sci. 18(7), 401–405 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, M., Vo, Q.B., Kowalczyk, R.: An efficient procedure for collective decision-making with CP-nets. In: Proceedings of the 19th European Conference on Artificial Intelligence, FAIA, vol. 215, pp. 375–380. IOS Press (2010). http://www.booksonline.iospress.nl/Content/View.aspx?piid=17776
  37. 37.
    Li, M., Vo, Q.B., Kowalczyk, R.: Majority-rule-based preference aggregation on multi-attribute domains with CP-nets. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 659–666. IFAAMAS (2011). http://portal.acm.org/citation.cfm?id=2031711&CFID=54178199&CFTOKEN=61392764
  38. 38.
    Maran, A., Maudet, N., Pini, M.S., Rossi, F., Venable, K.B.: A framework for aggregating influenced CP-nets and its resistance to bribery. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 668–674. AAAI Press (2013). http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6383 http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6383
  39. 39.
    Mattei, N.: Decision Making Under Uncertainty: Theoretical and Empirical Results on Social Choice, Manipulation, and Bribery, Ph.D. thesis. University of Kentucky (2012)Google Scholar
  40. 40.
    Mattei, N., Narodytska, N., Walsh, T.: How hard is it to control an election by breaking ties? In: Proceedings of the 21st European Conference on Artificial Intelligence, FAIA, vol. 263, pp. 1067–1068. IOS Press (2014). doi: 10.3233/978-1-61499-419-0-1067
  41. 41.
    Mattei, N., Pini, M.S., Rossi, F., Venable, K.B.: Bribery in voting with CP-nets. Ann. Math. Artif. Intell. 68(1–3), 135–160 (2013). doi: 10.1007/s10472-013-9330-5 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Number 31 in Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press (2006)Google Scholar
  43. 43.
    Obraztsova, S., Elkind, E.: On the complexity of voting manipulation under randomized tie-breaking. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, vol. 1, pp. 319–324. AAAI Press (2011). doi: 10.5591/978-1-57735-516-8/IJCAI11-063
  44. 44.
    Obraztsova, S., Elkind, E., Hazon, N.: Ties matter: complexity of voting manipulation revisited. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 71–78. IFAAMAS (2011). http://portal.acm.org/citation.cfm?id=2030481&CFID=69153967&CFTOKEN=38069692
  45. 45.
    Pini, M., Rossi, F., Venable, K.: Bribery in voting with soft constraints. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 803–809. AAAI Press (2013)Google Scholar
  46. 46.
    Purrington, K., Durfee, E.H.: Making social choices from individuals’ CP-nets. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1122–1124. IFAAMAS (2007). doi: 10.1145/1329125.1329341
  47. 47.
    Rossi, F., Venable, K.B., Walsh, T.: mCP nets: representing and reasoning with preferences of multiple agents. In: Proceedings of the 19th National Conference on Artificial Intelligence, pp. 729–734. AAAI Press (2004). http://www.aaai.org/Library/AAAI/2004/aaai04-115.php
  48. 48.
    Rothe, J., Schend, L.: Challenges to complexity shields that are supposed to protect elections against manipulation and control: a survey. Ann. Math. Artif. Intell. 68(1–3), 161–193 (2013). doi: 10.1007/s10472-013-9359-5 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Schlotter, I., Elkind, E., Faliszewski, P.: Campaign management under approval-driven voting rules. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 726–731 (2011)Google Scholar
  50. 50.
    Xia, L., Conitzer, V., Lang, J.: Voting on multiattribute domains with cyclic preferential dependencies. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 202–207. AAAI Press (2008). http://www.aaai.org/Library/AAAI/2008/aaai08-032.php
  51. 51.
    Xia, L., Lang, J., Ying, M.: Sequential voting rules and multiple elections paradoxes. In: Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 279–288. ACM (2007). doi: 10.1145/1324249.1324286
  52. 52.
    Xia, L., Lang, J., Ying, M.: Strongly decomposable voting rules on multiattribute domains. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 776–781. AAAI Press (2007). http://www.aaai.org/Library/AAAI/2007/aaai07-123.php

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Science, Department of Computer ScienceUniversity of TübingenTübingenGermany
  2. 2.Institute of Theoretical Computer ScienceUlm UniversityUlmGermany

Personalised recommendations