An NP-complete fragment of fibring logic

  • Yin Wu
  • Min Jiang
  • Zhongqiang Huang
  • Fei Chao
  • Changle Zhou
Article

Abstract

The fibring method provides a semantic way to take various modal logics as arguments to produce an integrated one, and the benefit of this method is clear: a stronger expressive power. In this article, we prove the computational complexity of a class of fibring logics. Especially for a fibring logic composed of two S 5 systems, we present a novel reduction method, Fibring Structure Mapping, to settle its complexity. Then, we found a special N P -complete fragment for the fibred S 5 system. The significance of these results is that, on the one hand, the reduction method presented in this article can be generalized to settle the computational complexity problem of other fibring logics, and on the other hand, they help us to achieve a balance between the expressive power and the difficulty of computation.

Keywords

Computability logic Combining logics Fibring semantics Computational complexity 

Mathematics Subject Classification (2010)

03B45 03B62 03D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achilleos, A., Lampis, M., Mitsou, V.: Parameterized modal satisfiability. Algorithmica 64(1), 38–55 (2012)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chagrov, A.V., Rybakov, M.N.: How many variables does one need to prove pspace-hardness of modal logics?. In: Advances in Modal Logic 4 (AiML02) (2003)Google Scholar
  3. 3.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30(1–4), 171–210 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251 (2002a)MATHCrossRefGoogle Scholar
  5. 5.
    Bennett, B., Dixon, C., Fisher, M., Hustadt, U., Franconi, E., Horrocks, I., Rijke, M.D.: Combinations of modal logics. Artif. Intell. Rev. 17(1), 1–20 (2002b)MATHCrossRefGoogle Scholar
  6. 6.
    Beth, E.W.: The foundations of mathematics A Study in the Philosophy of Science. North-Holland (1959)Google Scholar
  7. 7.
    Blackburn, P., Rijke, M.D.: Why combine logics Stud. Logica. 59(1), 5–27 (1997)MATHCrossRefGoogle Scholar
  8. 8.
    Blackburn, P., Rijke, M.D., Venema, Y.: Modal Logic. Cambridge University Press (2002)Google Scholar
  9. 9.
    Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic, Studies in Logic and Practical Reasoning, 1st edn., vol. 3. Elsevier, Amsterdam and Boston (2007)Google Scholar
  10. 10.
    Caleiro, C., Sernadas, C., Sernadas, A.: Parameterisation of logics. In: Recent Trends in Algebraic Development Techniques, pp. 48–63. Springer (1999)Google Scholar
  11. 11.
    Caleiro, C., Carnielli, W.A., Coniglio, M.E., Sernadas, A., Sernadas, C.: Fibring non-truth-functional logics: completeness preservation. J. Log. Lang. Inf. 12(2), 183–211 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Caleiro, C., Sernadas, A., Sernadas, C.: Fibring logics: past, present and future. We Will Show Them: Essays in Honour of Dov Gabbay, vol. One, pp. 363–388 (2005)Google Scholar
  13. 13.
    Carnielli, W., Coniglio, M.E.: Combining logics (2007)Google Scholar
  14. 14.
    Fine, K., Schurz, G.: Transfer theorems for multimodal logics. logic and reality. essays in pure and applied logic. Memory of Arthur Prior OUP (1992)Google Scholar
  15. 15.
    Gabbay, D.: An overview of fibred semantics and the combination of logics. Frontiers of Combining Systems 3, 1–56 (1996)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gabbay, D., Shehtman, V.: Products of modal logics. part 3: products of modal and temporal logics. Stud. Logica. 72(2), 157–183 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gabbay, D.M.: Fibring Logics, Oxford Logic Guides, vol. 38. Clarendon, Oxford and New York (1999)Google Scholar
  18. 18.
    Gabbay, D.M.: Many-dimensional Modal Logics: Theory and Applications, Studies in Logic and the Foundations of Mathematics, 1st edn., vol. 148. Elsevier North Holland, Amsterdam and Boston (2003)Google Scholar
  19. 19.
    Gabbay, D.M.: What is a logical system? an evolutionary view: 1964–2014. In: Computational Logic, Newnes, vol. 9, p. 41 (2014)Google Scholar
  20. 20.
    Gabbay, D.M., Shehtman, V.B.: Products of modal logics, part 1. Log. J. IGPL 6(1), 73–146 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. 23(1), 167–243 (2005)MATHMathSciNetGoogle Scholar
  22. 22.
    Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Logics in Artificial Intelligence, pp. 182–194. Springer (2010)Google Scholar
  23. 23.
    Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372 (1995)MATHCrossRefGoogle Scholar
  24. 24.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Halpern, J.Y., Rêgo, L.C.: Characterizing the np-pspace gap in the satisfiability problem for modal logic. J. Log. Comput. 17(4), 795–806 (2007)MATHCrossRefGoogle Scholar
  26. 26.
    Hirsch, R., Hodkinson, I., Kurucz, A.: On modal logics between k×k×k and s5s5s5. J. Symb. Log., 221–234 (2002)Google Scholar
  27. 27.
    Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic+ temporal logic=?. In: Handbook of Spatial Logics, pp. 497–564. Springer (2007)Google Scholar
  28. 28.
    Kracht, M., Wolter, F.: Simulation and transfer results in modal logic–a survey. Stud. Logica. 59(2), 149–177 (1997)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional calculi. Math. Log. Q. 9(5–6), 67–96 (1963)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Marx, M.: Complexity of products of modal logics. J. Log. Comput. 9(2), 197–214 (1999)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Papadimitriou, C.H.: Computational Complexity. Wiley (2003) Google Scholar
  33. 33.
    Rasga, J., Sernadas, A., Sernadas, C.: Fibring as biporting subsumes asymmetric combinations. Stud. Logica. 102(5), 1041–1074 (2014)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Russell, S.J., Norvig, P., Davis, E.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (2010)Google Scholar
  35. 35.
    Schurz, G.: Combinations and completeness transfer for quantified modal logics. Log. J. IGPL 19(4), 598–616 (2011)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Segerberg, K.: Two-dimensional modal logic. J. Philos. Log. 2(1), 77–96 (1973)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Sernadas, A., Sernadas, C.: Combining logic systems: why, how, what for. CIM Bull. 15, 9–14 (2003)Google Scholar
  38. 38.
    Sernadas, A., Sernadas, C., Caleiro, C.: Synchronization of logics. Stud. Logica. 59(2), 217–247 (1997)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. J. Log. Comput. 9(2), 149–179 (1999)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sernadas, A., Sernadas, C., Zanardo, A.: Fibring modal first-order logics: completeness preservation. Log. J. IGPL 10(4), 413–451 (2002a)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Sernadas, A., Sernadas, C., Rasga, J., Coniglio, M.: On graph-theoretic fibring of logics. J. Log. Comput. 19(6), 1321–1357 (2009)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sernadas, A., Sernadas, C., Rasga, J.: On meet-combination of logics. J. Log. Comput. 22(6), 1453–1470 (2012)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Sernadas, C., Rasga, J., Carnielli, W.A.: Modulated fibring and the collapsing problem. J. Symb. Log. 67(4), 1541–1569 (2002b)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Shekhtman, V.B.: Two-dimensional modal logic. Mathematical notes of the Academy of Sciences of the USSR 23(5), 417–424 (1978)MATHCrossRefGoogle Scholar
  45. 45.
    Spaan, E.: Complexity of modal logics. PhD thesis, Universiteit van Amsterdam (1993)Google Scholar
  46. 46.
    Thomason, R.H.: Combinations of tense and modality. In: Handbook of Philosophical Logic, pp. 135–165. Springer (1984)Google Scholar
  47. 47.
    Vardi, M.Y.: Why is modal logic so robustly decidable. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, 149–184 (1997)MathSciNetGoogle Scholar
  48. 48.
    Wolter, F.: Fusions of modal logics revisited. Advances in Modal Logic 1, 361–379 (1998)MathSciNetGoogle Scholar
  49. 49.
    Zanardo, A., Sernadas, A., Sernadas, C.: Fibring: completeness preservation. J. Symb. Log., 414–439 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yin Wu
    • 1
  • Min Jiang
    • 1
  • Zhongqiang Huang
    • 1
  • Fei Chao
    • 1
  • Changle Zhou
    • 1
  1. 1.Department of Cognitive Science and TechnologyXiamen University and Fujian Key Laboratory of Brain-like Intelligent SystemsXiamenChina

Personalised recommendations