Toward the complexity of the existence of wonderfully stable partitions and strictly core stable coalition structures in enemy-oriented hedonic games

  • Anja Rey
  • Jörg Rothe
  • Hilmar Schadrack
  • Lena Schend
Article

Abstract

We study the computational complexity of the existence and the verification problem for wonderfully stable partitions (WSPE and WSPV) and of the existence problem for strictly core stable coalition structures (SCSCS) in enemy-oriented hedonic games. In this note, we show that WSPV is NP-complete and both WSPE and SCSCS are DP-hard, where DP is the second level of the boolean hierarchy, and we discuss an approach for classifying the latter two problems in terms of their complexity.

Keywords

Game Theory Hedonic games Strict core stability Wonderful stability 

Mathematics Subject Classification (2010)

68Q15 68Q17 91A12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, H., Brandt, F., Seedig, H.: Computing desirable partitions in additively separable hedonic games. Artif. Intell. 195, 316–334 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baumeister, D., Brandt, F., Fischer, F., Hoffmann, J., Rothe, J.: The complexity of computing minimal unidirectional covering sets. Theory of Computing Systems 53(3), 467–502 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beigel, R.: Bounded queries to SAT and the boolean hierarchy. Theor. Comput. Sci. 84(2), 199–223 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beigel, R., Hemachandra, L., Wechsung, G.: On the power of probabilistic polynomial time: \(\mathrm {P^{NP[log]}}\subseteq PP\). In: Proceedings of the 4th Structure in Complexity Theory Conference, pp 225–227. IEEE Computer Society Press, June (1989)Google Scholar
  5. 5.
    Brams, S., Fishburn, P. In: Arrow, K., Sen, A., Suzumura, K. (eds.) : Handbook of Social Choice and Welfare, volume 1, pages 173–236. North-Holland (2002)Google Scholar
  6. 6.
    Brandt, F., Conitzer, V., Endriss, U. Computational social choice. In: Weiß, G. (ed.) : Multiagent Systems, pp 213–283. MIT Press, second edition (2013)Google Scholar
  7. 7.
    Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy I: Structural properties. SIAM J. Comput. 17(6), 1232–1252 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy II: Applications. SIAM J. Comput. 18(1), 95–111 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2011)Google Scholar
  10. 10.
    Chang, R., Kadin, J.: On computing boolean connectives of characteristic functions. Mathematical Systems Theory 28(3), 173–198 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dimitrov, D., Borm, P., Hendrickx, R., Sung, S.: Simple priorities and core stability in hedonic games. Soc. Choice Welf. 26(2), 421–433 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H, Freeman and Company (1979)Google Scholar
  13. 13.
    Hemachandra, L.: The strong exponential hierarchy collapses. J. Comput. Syst. Sci. 39(3), 299–322 (1989)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hemaspaandra, E., Rothe, J.: Recognizing when greed can approximate maximum independent sets is complete for parallel access to NP. Inf. Process. Lett. 65(3), 151–156 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997a)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Raising NP lower bounds to parallel NP lower bounds. SIGACT News 28(2), 2–13 (1997b)CrossRefMATHGoogle Scholar
  17. 17.
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hemaspaandra, E., Rothe, J., Spakowski, H.: Recognizing when heuristics can approximate minimum vertex covers is complete for parallel access to NP. R.A.I.R.O. Theoretical Informatics and Applications 40(1), 75–91 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Karp, R. Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) : Complexity of Computer Computations, pp 85–103. Plenum Press (1972)Google Scholar
  20. 20.
    Köbler, J., Schöning, U., Wagner, K.: The difference and truth-table hierarchies for NP. R.A.I.R.O. Informatique théorique et Applications 21, 419–435 (1987)MathSciNetMATHGoogle Scholar
  21. 21.
    Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pages 125–129. IEEE Computer Society Press (1972)Google Scholar
  22. 22.
    Nguyen, N., Nguyen, T., Roos, M., Rothe, J.: Computational complexity and approximability of social welfare optimization in multiagent resource allocation. Journal of Autonomous Agents and Multi-Agent Systems 28(2), 256–289 (2014)CrossRefMATHGoogle Scholar
  23. 23.
    Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complexity). J. Comput. Syst. Sci. 28(2), 244–259 (1984)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Papadimitriou, C., Zachos, S.: Two remarks on the power of counting. In: Proceedings of the 6th GI Conference on Theoretical Computer Science, pages 269–276. Springer-Verlag Lecture Notes in Computer Science #145 (1983)Google Scholar
  25. 25.
    Peleg, B., Sudhölter, P.: Introduction to the theory of cooperative games. Kluwer Academic Publishers (2003)Google Scholar
  26. 26.
    Reisch, Y., Rothe, J., Schend, L.: The margin of victory in Schulze, cup, and Copeland elections: Complexity of the regular and exact variants. In: Proceedings of the 7th European Starting AI Researcher Symposium, pp 250–259. IOS Press, August (2014)Google Scholar
  27. 27.
    Riege, T., Rothe, J.: Completeness in the boolean hierarchy: Exact-Four-Colorability, minimal graph uncolorability, and exact domatic number problems – a survey. Journal of Universal Computer Science 12(5), 551–578 (2006)MathSciNetGoogle Scholar
  28. 28.
    Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young elections. Theory of Computing Systems 36(4), 375–386 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: Part I: A compendium. SIGACT News 33(3), 32–49 (2002a)CrossRefGoogle Scholar
  30. 30.
    Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: Part II. SIGACT News 33(4), 22–36 (2002b)CrossRefGoogle Scholar
  31. 31.
    Stockmeyer, L.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sung, S., Dimitrov, D.: On core membership testing for hedonic coalition formation games. Oper. Res. Lett. 35(2), 155–158 (2006)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sung, S., Dimitrov, D.: Computational complexity in additive hedonic games. Eur. J. Oper. Res. 203(3), 635–639 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wagner, K.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51, 53–80 (1987)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wagner, K.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Woeginger, G.: Core stability in hedonic coalition formation. In: Proceedings of the 39th Conference on Current Trends in Theory and Practice of Computer Science, pages 33–50. Springer-Verlag Lecture Notes in Computer Science #7741 (January 2013a)Google Scholar
  37. 37.
    Woeginger, G.: A hardness result for core stability in additive hedonic games. Math. Soc. Sci. 65(2), 101–104 (2013b)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anja Rey
    • 1
  • Jörg Rothe
    • 1
  • Hilmar Schadrack
    • 1
  • Lena Schend
    • 1
  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations