Skip to main content

A hybrid clonal selection algorithm for the location routing problem with stochastic demands

Abstract

In this paper, a new formulation of the Location Routing Problem with Stochastic Demands is presented. The problem is treated as a two phase problem where in the first phase it is determined which depots will be opened and which customers will be assigned to them while in the second phase, for each of the open depots a Vehicle Routing Problem with Stochastic Demands is solved. For the solution of the problem a Hybrid Clonal Selection Algorithm is applied, where, in the two basic phases of the Clonal Selection Algorithm, a Variable Neighborhood Search algorithm and an Iterated Local Search algorithm respectively have been utilized. As there are no benchmark instances in the literature for this form of the problem, a number of new test instances have been created based on instances of the Capacitated Location Routing Problem. The algorithm is compared with both other variants of the Clonal Selection Algorithm and other evolutionary algorithms.

This is a preview of subscription content, access via your institution.

References

  1. Albareda-Sambola, M., Fernandez, E., Laporte, G.: Heuristic and lower bound for a stochastic location-routing problem. Eur. J. Oper. Res. 179, 940–955 (2007)

    Article  MATH  Google Scholar 

  2. Barreto, S., Ferreira, C., Paixao, J., Santos, B.S.: Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 179(3), 968–977 (2007)

    Article  MATH  Google Scholar 

  3. Bianchi, L., Birattari, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J. Math. Model. Algoritm. 5(1), 91–110 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  4. Berman, O., Simchi-Levi, D.: Finding the optimal a priori tour and location of a traveling salesman with nonhomogenous customers. Transp. Sci. 22, 148–154 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  5. Bertsimas, D.J.: Traveling salesman facility location problems. Transp. Sci. 23, 184–191 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  6. Brabazon, A., ONeill, M.: Biologically Inspired Algorithms for Financial Modeling, Natural Computing Series. Springer-Verlag, Berlin (2006)

    Google Scholar 

  7. Burness, R.C., White, J.A.: The traveling salesman location problem. Transp. Sci. 10, 348–360 (1976)

    Article  Google Scholar 

  8. Cuevas, E., Osuna-Enciso, V., Wario, F., Zald\(\acute {\iota }\)var, D., Pérez-Cisneros, M.: Automatic multiple circle detection based on artificial immune systems. Expert Syst. Appl. 39, 713–722 (2012)

  9. Dabrowski, J.: Clonal selection algorithm for vehicle routing, Proceedings of the 2008 1st International Conference on Information Technology, IT 2008, 19–21 May 2008, Gdansk, Poland (2008)

  10. Dasgupta, D. (ed.): Artificial Immune Systems and their Application. Springer, Heidelberg (1998)

  11. Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications. CRC Press, Taylor and Francis Group, USA (2009)

    Google Scholar 

  12. Daskin, M.: Network and discrete location. Models, algorithms and applications. John Wiley, New York (1995)

    Book  MATH  Google Scholar 

  13. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. Workshop on Artificial Immune Systems and Their Applications (GECCO00), Las Vegas, NV, 3637 (2000)

  15. De Castro, L.N, Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

    Article  Google Scholar 

  16. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd Edition. John Wiley, England (2007)

    Book  Google Scholar 

  17. Flower, D., Timmis, J. (eds.): In Silico Immunology. Springer, USA (2007)

  18. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer, Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, vol. 1994, pp 202–212. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  19. Ghaffari-Nasab, N., Jabalameli, M.S., Aryanezhad, M.B., Makui, A.: Modeling and solving the bi-objective capacitated location-routing problem with probabilistic travel times. Int. J. Adv. Manuf. Technol. 69, 2007–2019 (2013)

    Article  Google Scholar 

  20. Golozari, F., Jafari, A., Amiri, M.: Application of a hybrid simulated annealing-mutation operator to solve fuzzy capacitated location-routing problem. Int. J. Adv. Manuf. Technol. 67, 1791–1807 (2013)

    Article  Google Scholar 

  21. Gong, M., Jiao, L., Zhang, L.: Baldwinian learning in clonal selection algorithm for optimization. Inform. Sci. 180, 1218–1236 (2010)

    Article  Google Scholar 

  22. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  23. Laporte, G., Dejax, P.J.: Dynamic location-routing problems. J. Oper. Res. Soc. 40, 471–482 (1989)

    Article  MATH  Google Scholar 

  24. Li, F., Gao, S., Wang, W., Tang, Z.: An adaptive clonal selection algorithm for edge linking problem. IJCSNS International Journal of Computer Science and Network Security 9(7), 57–65 (2009)

    Google Scholar 

  25. Lourenco, H.R., Martin, O., Stützle, T.: Iterated Local Search. Handbook of Metaheuristics. vol. 57 of Operations Research and Management Science, pp 321–353. Kluwer Academic Publishers (2002)

  26. Klibi, W., Lasalle, F., Martel, A., Ichoua, S.: The stochastic multiperiod location transportation problem. Transp. Sci. 44, 221–237 (2010)

    Article  Google Scholar 

  27. Ma, J., Shi, G., Gao, L.: An Improved immune clonal selection algorithm and its applications for VRP. Proceedings of the IEEE International Conference on Automation and Logistics Shenyang, August 2009, China (2009)

  28. Marinakis, Y., Marinaki, M.: A Particle Swarm Optimization Algorithm with Path Relinking for the Location Routing Problem. J. Math. Model. Algoritm. 7, 59–78 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  29. Marinakis, Y., Marinaki, M.: Combinatorial expanding neighborhood topology particle swarm optimization for the vehicle routing problem with stochastic demands: 2013, Genetic and Evolutionary Computation Conference, Amsterdam, The Netherlands (2013)

  30. Marinakis, Y., Iordanidou, G.R., Marinaki, M.: Particle swarm optimization for the vehicle routing problem with stochastic demands. Appl. Soft Comput. 13, 1693–1704 (2013)

    Article  Google Scholar 

  31. Marinakis, Y., Marinaki, M., Spanou, P.: In: Fister, I., Fister, I. Jr. (eds.) A memetic differential evolution algorithm for vehicle routing problem with stochastic demands, Adaptation in Computational Intelligence, Adaptation Learning and Optimization (2014). (accepted)

  32. Marinakis, Y., Marinaki, M., Migdalas, A.: In: Pardalos, P.M., et al. (eds.) A hybrid clonal selection algorithm for the vehicle routing problem with stochastic demands, LION 2014, LNCS 8426, pp 258–273 (2014)

  33. Martin, O., Otto, S.W., Felten, E.W.: Large-step markov chains for the traveling salesman problem. Complex Systems 5(3), 299–326 (1991)

    MathSciNet  MATH  Google Scholar 

  34. Mehrjerdi, Y.Z., Nadizadeh, A.: Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. Eur. J. Oper. Res. 229, 75–84 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  35. Min, H., Jayaraman, V., Srivastava, R.: Combined location-routing problems: A synthesis and future research directions. Eur. J. Oper. Res. 108, 1–15 (1998)

    Article  MATH  Google Scholar 

  36. Nagy, G., Salhi, S.: Location-routing: Issues, models and methods. Eur. J. Oper. Res. 177, 649–672 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  37. Panigrahi, B.K., Yadav, S.R., Agrawal, S., Tiwari, M.K.: A clonal algorithm to solve economic load dispatch. Electr. Power Syst. Res. 77, 1381–1389 (2007)

    Article  Google Scholar 

  38. Perl, J., Daskin, M.S.: A warehouse location routing model. Trans. Res. B 19, 381–396 (1985)

    Article  Google Scholar 

  39. Prins, C., Prodhon, C., Wolfler Calvo, R.: Nouveaux algorithmes pour le probleme de localisation et routage sous contraintes de capacite, Proceedings of the MOSIM 04 (Vol. 2, pp. 1115-1122). Lavoisier, Ecole des Mines de Nantes (2004)

    Google Scholar 

  40. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. Eur. J. Oper. Res. 238, 1–17 (2014)

    MathSciNet  Article  Google Scholar 

  41. Simchi-Levi, D.: The capacitated traveling salesman location problem. Transp. Sci. 25, 9–18 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  42. Talbi, E.-G.: Metaheuristics : From Design to Implementation. John Wiley, USA (2009)

    Book  MATH  Google Scholar 

  43. Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis, Research and Development in Intelligent Systems, vol. 14, pp 19–32. Springer, Cambridge (2000)

    Google Scholar 

  44. Tuzun, D., Burke, L.I.: A two-phase tabu search approach to the location routing problem. Eur. J. Oper. Res. 116, 87–99 (1999)

    Article  MATH  Google Scholar 

  45. Ulutas, B.H., Islier, A.A.: A clonal selection algorithm for dynamic facility layout problems. J. Manuf. Syst. 28, 123–131 (2009)

    Article  Google Scholar 

  46. Ulutas, B.H., Kulturel-Konak, S.: An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Syst. Appl. 39, 5384–5395 (2012)

    Article  Google Scholar 

  47. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transp. Sci. 34, 99–112 (2000)

    Article  MATH  Google Scholar 

  48. Yang, J.-H., Sun, L., Lee, H.P., Qian, Y., Liang, Y.-C.: Clonal selection based memetic algorithm for job shop scheduling problems. Journal of Bionic Engineering 5, 111–119 (2008)

    Article  Google Scholar 

  49. Zarandi, M., Hemmati, A., Davari, S.: The multi-depot capacitated location-routing problem with fuzzy travel times. Expert Syst. Appl. 38, 10075–10084 (2011)

    Article  Google Scholar 

  50. Zarandi, M., Hemmati, A., Davari, S.: Capacitated location-routing problem with time windows under uncertainty. Knowl.-Based Syst. 37, 480–489 (2013)

    Article  Google Scholar 

  51. Zhu, Y., Gao, S., Dai, H., Li, F., Tang, Z.: Improved clonal algorithm and Its application to traveling salesman problem. IJCSNS Int. J. Comput. Sci. Netw. Secur. 7(8), 109–113 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marinakis, Y., Marinaki, M. & Migdalas, A. A hybrid clonal selection algorithm for the location routing problem with stochastic demands. Ann Math Artif Intell 76, 121–142 (2016). https://doi.org/10.1007/s10472-014-9441-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9441-7

Keywords

  • Clonal selection algorithm
  • Variable neighborhood search
  • Iterated local search
  • Location routing problem with stochastic demands

Mathematics Subject Classifications (2010)

  • 90B06
  • 90B15
  • 90B80
  • 90C27
  • 68T20