Abstract
Given a relation 𝓡 ⊆ 𝓞 × 𝓐 on a set 𝓞 of objects and a set 𝓐 of attributes, the AOC-poset (Attribute/Object Concept poset), is the partial order defined on the “introducers” of objects and attributes in the corresponding concept lattice. In this paper, we present Hermes, a simple and efficient algorithm for building an AOC-poset which runs in O(m i n{n m, n α}), where n is the number of objects plus the number of attributes, m is the size of the relation, and n α is the time required to perform matrix multiplication (currently α = 2.376). Finally, we compare the runtime of Hermes with the runtime of other algorithms computing the AOC-poset: Ares, Ceres and Pluton. We characterize the cases where each algorithm is the more relevant.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aboud, N., Arévalo, G., Bendavid, O., Falleri, J.-R., Haderer, N., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.: Building hierarchical typed component directories using formal concept analysis. Submitted (2014)
Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of Galois sub-hierarchy-building algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA, Volume 4390 of Lecture Notes in Computer Science, pp 166–180. Springer, Berlin (2007)
Barbut, M., Monjardet, B.: Ordre et Classification – Algèbre et Combinatoire. Hachette, Paris (1970)
Berry, A., Bordat, J.P., Sigayret, A.: A local approach to concept generation. Ann. Math. Artif. Intell. 49(1–4), 117–136 (2007)
Berry, A., Huchard, M., McConnell, R.M., Sigayret, A., Spinrad, J.P.: Efficiently computing a linear extension of the sub-hierarchy of a concept lattice. In: Ganter, B., Godin, R. (eds.) ICFCA, Volume 3403 of Lecture Notes in Computer Science, pp 208–222. Springer, Berlin (2005)
Berry, A., Sigayret, A.: Maintaining class membership information. In: Bruel, J.-M., Bellahsene, Z. (eds.) OOIS Workshops, Volume 2426 of Lecture Notes in Computer Science, pp 13–23. Springer, Berlin (2002)
Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Math. Inform. Sci. Hum. 96, 31–47 (1986)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Aho, A.V. (ed.) STOC, pp. 1–6. ACM (1987)
Dicky, H., Dony, C., Huchard, M., Libourel, T.: Ares, un algorithme d’ajout avec restructuration dans les hiérarchies de classes. In: Proceedings of LMO’94, pp. 125–136 (1994)
Dicky, H., Dony, C., Huchard, M., Libourel, T.: ARES, adding a class and REStructuring inheritance hierarchies. In: Proceedings of BDA’95, pp. 25–42 (1995)
Dicky, H., Dony, C., Huchard, M., Libourel, T.: On automatic class insertion with overloading. In: Anderson, L., Coplien, J. (eds.) OOPSLA, pp. 251–267. ACM (1996)
Dolques, X., Le Ber, F., Huchard, M.: AOC-Posets: a scalable alternative to concept lattices for relational concept analysis. In: Proceedings of the Tenth International Conference on Concept Lattices and Their Applications (CLA 2013), pp. 129–140 (2013)
Dubois, D., Dupin de Saint Cyr Bannay, F., Prade, H.: A possibilty-theoretic view of formal concept analysis. Fundam. Inform. 75(1–4), 195–213 (2007)
Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Universalis 6(1–2), 149–169 (2012)
Eschen, E.M., Pinet, N., Sigayret, A.: Consecutive-ones: handling lattice planarity efficiently. In: Proceedings of CLA 2007 (Concept Lattices and Applications), CEUR WS, vol. 331, paper 12 (2007)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois lattices. In: Proceedings of OOPSLA ’93, vol. 28, pp. 394–410 (1993)
Godin, R., Mili, H., Mineau, G.W., Missaoui, R., Arfi, A., Chau, T.-T.: Design of class hierarchies based on concept (Galois) lattices. Theory Appl. Object Syst. 4(2), 117–134 (1998)
Hitzler, P.: Default reasoning over domains and concept hierarchies. In: Proceedings of KI 2004, Volume 3238 of LNCS, pp. 351–365. Springer (2004)
Hsu, W.-L., Ma, T.-H.: Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs. SIAM J. Comput. 28(3), 1004–1020 (1999)
Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify algorithms building class hierarchies. Theory Inform. Appl. 34, 521–548 (2000)
Leblanc, H.: Sous-hiérarchies de Galois: un Modèle pour la Construction et L’évolution des Hiérarchies d’objets (in french). PhD thesis, Université Montpellier II (2000)
Loesch, F., Ploedereder, E.: Restructuring variability in software product lines using concept analysis of product configurations. In: Krikhaar, R.L., Verhoef, C., Lucca, G.A.D. (eds.) Proceedings of the 11th European Conference on Software Maintenance and Reengineering, pp 159–170. IEEE, Amsterdam (2007)
Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16(5), 854–879 (1987)
Mineau, G.W., Gecsei, J., Godin, R.: Structuring knowledge bases using automatic learning. In: ICDE, pp. 274–280. IEEE Computer Society (1990)
Osswald, R., Petersen, W.: Induction of classifications from linguistic data. In: Proceedings of ECAI’02 Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases (2002)
Osswald, R., Petersen, W.: A logical approach to data-driven classification. In: Proceedings of the 26th Annual German Conference on Advances in Artificial Intelligence KI 2003, Volume 2821 of LNCS, pp. 267–281. Springer (2003)
Paige, R., Tarjan, R.E.: Three partition algorithms refinement. SIAM J. Comput. 16(6), 973–989 (1987)
Petersen, W.: A set-theoretical approach for the induction of inheritance hierarchies. In: Proceedings of the Joint Conference on Formal Grammar and Mathematics of Language (FG/MOL-01), Electronic Notes in Theoretical in Computer Science, vol. 53, pp. 296–308. Elsevier (2001)
Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)
Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Schaefer, I., John, I., Schmid, K. (eds.) SPLC Workshops, p. 4. ACM (2011)
Sigayret, A.: Data mining: une approche par les graphes (in french). PhD thesis, Université Blaise Pascal (Clermont-Ferrand, France) (2002)
Spinrad, J.P.: Doubly lexical ordering of dense 0-1 matrices. Inf. Process. Lett. 45(5), 229–235 (1993)
Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society (AMS), Paris (2003)
Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants. In: Proceedings of the 19th Working Conference on Reverse Engineering, pp. 145–154. IEEE (2012)
Yang, Y., Peng, X., Zhao, W.: Domain feature model recovery from multiple applications using data access semantics and formal concept analysis. In: Zaidman, A., Antoniol, G., Ducasse, S. (eds.) Proceedings of the 16th Working Conference on Reverse Engineering, pp. 215–224. IEEE (2009)
Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Slowinski, R., Komorowski, H.J., Grzymala-Busse, J.W. (eds.) Rough Sets and Current Trends in Computing, Volume 3066 of Lecture Notes in Computer Science, pp 59–68. Springer, Berlin (2004)
Yevtushenko, S.A.: System of data analysis “Concept Explorer” (In Russian). In: Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, Russia, pp. 127–134 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berry, A., Gutierrez, A., Huchard, M. et al. Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation. Ann Math Artif Intell 72, 45–71 (2014). https://doi.org/10.1007/s10472-014-9418-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-014-9418-6