Skip to main content
Log in

Abstract

We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of Representations for Domain Adaptation. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference (2007)

  3. Ben-David, S., Lu, T., Luu, T., Pál, D.: Impossibility theorems for domain adaptation. J. Mach. Learn. Res. Proc. Track 9, 129–136 (2010)

    Google Scholar 

  4. Ben-David, S., Urner, R.: On the hardness of domain adaptation and the utility of unlabeled target samples. In: ALT, pp. 139–153 (2012)

  5. Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning Bounds for Domain Adaptation. Advances in Neural Information Processing Systems (2007)

  6. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Association for Computational Linguistics. Prague, Czech Republic (2007)

  7. Cortes, C., Mohri, M.: Domain adaptation in regression. In: ALT, pp. 308–323 (2011)

  8. Mansour, Y.: Learning and domain adaptation. In: ALT, pp. 4–6 (2009)

  9. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: COLT (2009)

  10. Mansour, Y., Mohri, M., Rostamizadeh, A.: Multiple source adaptation and the renyi divergence. In: UAI (2009)

  11. Minmin Chen, J.B., Weinberger, K.: Co-training for domain adaptation. In: Neural Information Processing Systems. MIT Press, Cambridge (2011)

  12. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  13. Valiant, L.G.: A Theory of the Learnable. ACM, New York (1984)

    Google Scholar 

  14. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  15. Xu, H., Caramanis, C., Mannor, S.: A distributional interpretation of robust optimization. Math. Oper. Res. 37(1), 95–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, H., Mannor, S.: Robustness and generalization. In: COLT, pp. 503–515 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Schain.

Additional information

This research was supported in by The Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11), by a grant from the Israel Science Foundation, by a grant from United States-Israel Binational Science Foundation (BSF), and by a grant from the Israeli Ministry of Science (MoS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, Y., Schain, M. Robust domain adaptation. Ann Math Artif Intell 71, 365–380 (2014). https://doi.org/10.1007/s10472-013-9391-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9391-5

Keywords

Mathematics Subject Classification

Navigation