Advertisement

Robust domain adaptation

  • Yishay Mansour
  • Mariano SchainEmail author
Article

Abstract

We derive a generalization bound for domain adaptation by using the properties of robust algorithms. Our new bound depends on λ-shift, a measure of prior knowledge regarding the similarity of source and target domain distributions. Based on the generalization bound, we design SVM variants for binary classification and regression domain adaptation algorithms.

Keywords

Adaptation Robustness SVM 

Mathematics Subject Classification

68T04 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of Representations for Domain Adaptation. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference (2007)Google Scholar
  3. 3.
    Ben-David, S., Lu, T., Luu, T., Pál, D.: Impossibility theorems for domain adaptation. J. Mach. Learn. Res. Proc. Track 9, 129–136 (2010)Google Scholar
  4. 4.
    Ben-David, S., Urner, R.: On the hardness of domain adaptation and the utility of unlabeled target samples. In: ALT, pp. 139–153 (2012)Google Scholar
  5. 5.
    Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning Bounds for Domain Adaptation. Advances in Neural Information Processing Systems (2007)Google Scholar
  6. 6.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Association for Computational Linguistics. Prague, Czech Republic (2007)Google Scholar
  7. 7.
    Cortes, C., Mohri, M.: Domain adaptation in regression. In: ALT, pp. 308–323 (2011)Google Scholar
  8. 8.
    Mansour, Y.: Learning and domain adaptation. In: ALT, pp. 4–6 (2009)Google Scholar
  9. 9.
    Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: COLT (2009)Google Scholar
  10. 10.
    Mansour, Y., Mohri, M., Rostamizadeh, A.: Multiple source adaptation and the renyi divergence. In: UAI (2009)Google Scholar
  11. 11.
    Minmin Chen, J.B., Weinberger, K.: Co-training for domain adaptation. In: Neural Information Processing Systems. MIT Press, Cambridge (2011)Google Scholar
  12. 12.
    Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)zbMATHGoogle Scholar
  13. 13.
    Valiant, L.G.: A Theory of the Learnable. ACM, New York (1984)Google Scholar
  14. 14.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)zbMATHGoogle Scholar
  15. 15.
    Xu, H., Caramanis, C., Mannor, S.: A distributional interpretation of robust optimization. Math. Oper. Res. 37(1), 95–110 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xu, H., Mannor, S.: Robustness and generalization. In: COLT, pp. 503–515 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations