Reliable indoor location prediction using conformal prediction

  • Khuong An NguyenEmail author
  • Zhiyuan Luo


Indoor localisation is the state-of-the-art to identify and observe a moving human or an object inside a building. However, because of the harsh indoor conditions, current indoor localisation systems remain either too expensive or not accurate enough. In this paper, we tackle the latter issue in a different direction, with a new conformal prediction algorithm to enhance the accuracy of the prediction. We handle the common indoor signal attenuation issue, which introduces errors into the training database, with a reliability measurement for our prediction. We show why our approach performs better than other solutions through empirical studies with two testbeds. To the best of our knowledge, we are the first to apply conformal prediction for the localisation purpose in general, and for the indoor localisation in particular.


Conformal prediction Fingerprinting Indoor localisation Bluetooth tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anastasi, G., Bandelloni, R., Conti, M., Delmastro, F., Gregori, E., Mainetto, G.: Experimenting an indoor bluetooth-based positioning service. In: 23rd International Conference on Distributed Computing Systems Workshops, pp. 480–483. IEEE (2003)Google Scholar
  2. 2.
    Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: INFOCOM 2000. Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 2, pp. 775–784. IEEE (2000)Google Scholar
  3. 3.
    Bargh, M.S., de Groote, R.: Indoor localization based on response rate of bluetooth inquiries. In: Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, pp. 49–54. ACM (2008)Google Scholar
  4. 4.
    Battiti, R., Le, N.T., Villani, A.: Location-aware computing: a neural network model for determining location in wireless lans. Tech. Rep. DIT-02-0083 (2002)Google Scholar
  5. 5.
    Bellotti, T., Luo, Z., Gammerman, A., Van Delft, F.W., Saha, V.: Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines. Int. J. Neural Syst. 15(4), 247–258 (2005)CrossRefGoogle Scholar
  6. 6.
    Brunato, M., Kiss Kallo, C.: Transparent location fingerprinting for wireless services. Tech. Rep. DIT-02-071 (2002)Google Scholar
  7. 7.
    Bruno, R., Delmastro, F.: Design and analysis of a bluetooth-based indoor localization system. In: Personal Wireless Communications, pp. 711–725. Springer (2003)Google Scholar
  8. 8.
    Chen, Y., Lymberopoulos, D., Liu, J., Priyantha, B.: Fm-based indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 169–182. ACM (2012)Google Scholar
  9. 9.
    Cheung, K.C., Intille, S.S., Larson, K.: An inexpensive bluetooth-based indoor positioning hack. In: Proc. UbiComp06 Extended Abstracts (2006)Google Scholar
  10. 10.
    Dashevskiy, M., Luo, Z.: Reliable probabilistic classification of internet traffic. IJIA 6(2), 133–146 (2009)Google Scholar
  11. 11.
    Draper, N.R., Smith, H., Pownell, E.: Applied Regression Analysis. Wiley, New York (1966)Google Scholar
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-interscience (2012)Google Scholar
  13. 13.
    Fang, S.H., Lin, T.N.: Indoor location system based on discriminant-adaptive neural network in ieee 802.11 environments. IEEE Trans. Neural Netw. 19(11), 1973–1978 (2008)CrossRefGoogle Scholar
  14. 14.
    Hallberg, J., Nilsson, M., Synnes, K.: Positioning with bluetooth. In: 10th International Conference on Telecommunications, ICT 2003, vol. 2, pp. 954–958. IEEE (2003)Google Scholar
  15. 15.
    Hay, S., Harle, R.: Bluetooth tracking without discoverability. In: Location and Context Awareness, pp. 120–137. Springer (2009)Google Scholar
  16. 16.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)CrossRefGoogle Scholar
  17. 17.
    Huang, A.: The use of bluetooth in linux and location aware computing. Ph.D. thesis, Massachusetts Institute of Technology (2005)Google Scholar
  18. 18.
    Jevring, M., de Groote, R., Hesselman, C.: Dynamic optimization of bluetooth networks for indoor localization. In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology, pp. 663–668. ACM (2008)Google Scholar
  19. 19.
    Kemper, J., Linde, H.: Challenges of passive infrared indoor localization. In: 5th Workshop on Positioning, Navigation and Communication. WPNC 2008, pp. 63–70. IEEE (2008)Google Scholar
  20. 20.
    Kothari, N., Kannan, B., Glasgwow, E.D., Dias, M.B.: Robust indoor localization on a commercial smart phone. Procedia Computer Science 10, 1114–1120 (2012)CrossRefGoogle Scholar
  21. 21.
    Letchner, J., Fox, D., LaMarca, A.: Large-scale localization from wireless signal strength. In: Proceedings of the national conference on artificial intelligence, vol. 20, pp. 15–20. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2005)Google Scholar
  22. 22.
    Lin, T.N., Lin, P.C.: Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. In: 2005 International Conference on Wireless Networks, Communications and Mobile Computing, vol. 2, pp. 1569–1574. IEEE (2005)Google Scholar
  23. 23.
    Link, J.A.B., Smith, P., Viol, N., Wehrle, K.: Footpath: Accurate map-based indoor navigation using smartphones. In: 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2011)Google Scholar
  24. 24.
    Madhavapeddy, A., Tse, A.: A study of bluetooth propagation using accurate indoor location mapping. In: UbiComp 2005: Ubiquitous Computing, pp. 105–122. Springer (2005)Google Scholar
  25. 25.
    Naya, F., Noma, H., Ohmura, R., Kogure, K.: Bluetooth-based indoor proximity sensing for nursing context awareness. In: Ninth IEEE International Symposium on Wearable Computers, pp. 212–213. IEEE (2005)Google Scholar
  26. 26.
    Nguyen, K., Luo, Z.: Evaluation of bluetooth properties for indoor localisation. In: Progress in Location-Based Services, pp. 127–149. Springer (2013)Google Scholar
  27. 27.
    Nguyen, K.A.: Robot-based evaluation of bluetooth fingerprinting. Master’s thesis, Computer Lab, University of Cambridge (2011)Google Scholar
  28. 28.
    Pandya, D., Jain, R., Lupu, E.: Indoor location estimation using multiple wireless technologies. In: 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications. PIMRC 2003, vol. 3, pp. 2208–2212. IEEE (2003)Google Scholar
  29. 29.
    Priyantha, N.B.: The cricket indoor location system. Ph.D. thesis, Massachusetts Institute of Technology (2005)Google Scholar
  30. 30.
    Rizos, C., Dempster, A.G., Li, B., Salter, J.: Indoor positioning techniques based on wireless lan (2007)Google Scholar
  31. 31.
    Robertson, P., Angermann, M., Krach, B.: Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors. In: Proceedings of the 11th international conference on Ubiquitous computing, pp. 93–96. ACM (2009)Google Scholar
  32. 32.
    Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press (2002)Google Scholar
  33. 33.
    Shafer, G., Vovk, V.: A tutorial on conformal prediction. The Journal of Machine Learning Research 9, 371–421 (2008)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Taheri, A., Singh, A., Emmanuel, A.: Location fingerprinting on infrastructure 802.11 wireless local area networks (wlans) using locus. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 676–683. IEEE (2004)Google Scholar
  35. 35.
    Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world. Springer Science+ Business Media (2005)zbMATHGoogle Scholar
  36. 36.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems (TOIS) 10(1), 91–102 (1992)CrossRefGoogle Scholar
  37. 37.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)CrossRefGoogle Scholar
  38. 38.
    Wölfle, G., Hoppe, R., Zimmermann, D., Landstorfer, F.M.: Enhanced localization technique within urban and indoor environments based on accurate and fast propagation models. In: European Wireless, pp. 25–28 (2002)Google Scholar
  39. 39.
    Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: Proceedings of the 10th international conference on Ubiquitous computing, pp. 114–123. ACM (2008)Google Scholar
  40. 40.
    Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.: A wireless lan-based indoor positioning technology. IBM Journal of Research and Development 48(5.6), 617–626 (2004)CrossRefGoogle Scholar
  41. 41.
    Youssef, M., Agrawala, A.: The horus location determination system. Wireless Networks 14(3), 357–374 (2008)CrossRefGoogle Scholar
  42. 42.
    Youssef, M.A., Agrawala, A.: On the optimality of wlan location determination systems. Tech. Rep. CS-TR-4459 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Computer Science, Royal HollowayUniversity of London EghamSurreyUK

Personalised recommendations