Challenges to complexity shields that are supposed to protect elections against manipulation and control: a survey

Article

Abstract

In the context of voting, manipulation and control refer to attempts to influence the outcome of elections by either setting some of the votes strategically (i.e., by reporting untruthful preferences) or by altering the structure of elections via adding, deleting, or partitioning either candidates or voters. Since by the celebrated Gibbard–Satterthwaite theorem (and other results expanding its scope) all reasonable voting systems are manipulable in principle and since many voting systems are in principle susceptible to many control types modeling natural control scenarios, much work has been done to use computational complexity as a shield to protect elections against manipulation and control. However, most of this work has merely yielded NP-hardness results, showing that certain voting systems resist certain types of manipulation or control only in the worst case. Various approaches, including studies of the typical case (where votes are given according to some natural distribution), pose serious challenges to such worst-case complexity results and might allow successful manipulation or control attempts, despite the NP-hardness of the corresponding problems. We survey and discuss some recent results on these challenges to complexity results for manipulation and control, including typical-case analyses and experiments, fixed-parameter tractability, domain restrictions (single-peakedness), and approximability.

Keywords

Computational social choice Voting theory Manipulation Control 

Mathematics Subject Classifications (2010)

68Q17 68T99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, J.: The technique of the Nanson preferential majority system of election. Proc. R. Soc. Vic. 39, 42–52 (1926)Google Scholar
  2. 2.
    Ballester, M., Haeringer, G.: A characterization of the single-peaked domain. Soc. Choice Welf. 36(2), 305–322 (2011)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartholdi III, J., Orlin, J.: Single transferable vote resists strategic voting. Soc. Choice Welf. 8(4), 341–354 (1991)MATHMathSciNetGoogle Scholar
  4. 4.
    Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welf. 6(2), 157–165 (1989)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput. Model. 16(8–9), 27–40 (1992)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J., Sanver, R. (eds.) Handbook on Approval Voting, chap. 10, pp. 199–251. Springer (2010)Google Scholar
  8. 8.
    Berg, S.: Paradox of voting under an urn model: the effect of homogeneity. Public Choice 47(2), 377–387 (1985)CrossRefGoogle Scholar
  9. 9.
    Betzler, N.: On problem kernels for possible winner determination under the k-approval protocol. In: Proceedings of the 35th International Symposium on Mathematical Foundations of Computer Science, pp. 114–125. Lecture Notes in Computer Science #6281. Springer-Verlag (2010)Google Scholar
  10. 10.
    Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of voting—a parameterized complexity perspective. In: Bodlaender et al. H. (ed.) Fellows Festschrift, pp. 318–363. Lecture Notes in Computer Science #7370. Springer-Verlag (2012)Google Scholar
  11. 11.
    Betzler, N., Guo, J., Niedermeier, R.: Parameterized computational complexity of Dodgson and Young elections. In: Proceedings of the 11th Scandinavian Workshop on Algorithm Theory, pp. 402–413. Lecture Notes in Computer Science #5124. Springer-Verlag (2008)Google Scholar
  12. 12.
    Betzler, N., Hemmann, S., Niedermeier, R.: A multivariate complexity analysis of determining possible winners given incomplete votes. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 53–58. IJCAI (2009)Google Scholar
  13. 13.
    Betzler, N., Niedermeier, R., Woeginger, G.: Unweighted coalitional manipulation under the Borda rule is NP-hard. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 55–60. IJCAI (2011)Google Scholar
  14. 14.
    Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. In: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Applications, pp. 43–53. Lecture Notes in Computer Science #5165. Springer-Verlag (2008)Google Scholar
  15. 15.
    Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34 (1948)CrossRefGoogle Scholar
  16. 16.
    Brams, S., Fishburn, P.: Approval voting. Am. Polit. Sci. Rev. 72(3), 831–847 (1978)CrossRefGoogle Scholar
  17. 17.
    Brams, S., Sanver, R.: Voting systems that combine approval and preference. In: Brams, S., Gehrlein, W., Roberts, F. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer (2009)Google Scholar
  18. 18.
    Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combinatorial protections: polynomial-time algorithms for single-peaked electorates. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 715–722. AAAI Press (2010)Google Scholar
  19. 19.
    Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Approximability of manipulating elections. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 44–49 (2008)Google Scholar
  20. 20.
    Brill, M., Fischer, F.: The price of neutrality for the ranked pairs method. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1299–1305. AAAI Press (2012)Google Scholar
  21. 21.
    Coleman, T., Teague, V.: On the complexity of manipulating elections. In: Proceedings of Computing: the 13th Australasian Theory Symposium, vol. 65, pp. 25–33 (2007)Google Scholar
  22. 22.
    Condorcet, J.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (1785). Facsimile reprint of original published in Paris, 1972, by the Imprimerie Royale. English translation appears in I. McLean and A. Urken, Classics of Social Choice, pp. 91–112. University of Michigan Press (1995)Google Scholar
  23. 23.
    Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Artif. Intell. Res. 35, 161–191 (2009)MATHMathSciNetGoogle Scholar
  24. 24.
    Conitzer, V.: Making decisions based on the preferences of multiple agents. Commun. ACM 53(3), 84–94 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Conitzer, V., Rognlie, M., Xia, L.: Preference functions that score rankings and maximum likelihood estimation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 109–115. IJCAI (2009)Google Scholar
  26. 26.
    Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipulation hard. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 781–788. Morgan Kaufmann (2003)Google Scholar
  27. 27.
    Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to manipulate. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 627–634. AAAI Press (2006)Google Scholar
  28. 28.
    Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard to manipulate? J. ACM 54(3), 14 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Copeland, A.: A “reasonable” social welfare function. Mimeographed Notes from a Seminar on Applications of Mathematics to the Social Sciences. University of Michigan (1951)Google Scholar
  30. 30.
    Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and algorithms for Borda manipulation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 657–662. AAAI Press (2011)Google Scholar
  31. 31.
    Dobra, J.: An approach to empirical studies of voting paradoxes: an update and extension. Public Choice 41(2), 241–250 (1983)CrossRefGoogle Scholar
  32. 32.
    Dobzinski, S., Procaccia, A.: Frequent manipulability of elections: the case of two voters. In: Proceedings of the 4th International Workshop on Internet and Network Economics, pp. 653–664 (2008)Google Scholar
  33. 33.
    Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. In: Proceedings of the 5th International Symposium on Parameterized and Exact Computation, pp. 107–122. Lecture Notes in Computer Science #6478. Springer-Verlag (2010)Google Scholar
  34. 34.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag (1999)Google Scholar
  35. 35.
    Duggan, J., Schwartz, T.: Strategic manipulability without resoluteness or shared beliefs: Gibbard–Satterthwaite generalized. Soc. Choice Welf. 17(1), 85–93 (2000)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Dyer, J., Miles Jr., R.: An actual application of collective choice theory to the selection of trajectories for the mariner Jupiter/Saturn 1977 project. Oper. Res. 24(2), 220–244 (1976)MATHCrossRefGoogle Scholar
  37. 37.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, pp. 299–310. Lecture Notes in Computer Science #5814. Springer-Verlag (2009)Google Scholar
  38. 38.
    Elkind, E., Lipmaa, H.: Hybrid voting protocols and hardness of manipulation. In: Proceedings of the 16th International Symposium on Algorithms and Computation, pp. 206–215. Lecture Notes in Computer Science #3827. Springer-Verlag (2005)Google Scholar
  39. 39.
    Erdélyi, G., Fellows, M.: Parameterized control complexity in Bucklin voting and in fallback voting. In: Conitzer, V., Rothe, J. (eds.) Proceedings of the 3rd International Workshop on Computational Social Choice, pp. 163–174. Universität Düsseldorf (2010)Google Scholar
  40. 40.
    Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting. Computing Research Repository (2012). Tech. Rep. arXiv:1103.2230 [cs.CC]. March, 2011. Revised August 21, 2012
  41. 41.
    Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Frequency of correctness versus average-case polynomial time and generalized juntas. Tech. Rep. TR-934, Department of Computer Science, University of Rochester, Rochester, NY (2008)Google Scholar
  42. 42.
    Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Frequency of correctness versus average polynomial time. Inf. Process. Lett. 109(16), 946–949 (2009)MATHCrossRefGoogle Scholar
  43. 43.
    Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Generalized juntas and NP-hard sets. Theor. Comput. Sci. 410(38–40), 3995–4000 (2009)MATHCrossRefGoogle Scholar
  44. 44.
    Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting fully resists constructive control and broadly resists destructive control. Math. Log. Q. 55(4), 425–443 (2009)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Erdélyi, G., Piras, L., Rothe, J.: The complexity of voter partition in Bucklin and fallback voting: solving three open problems. In: Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 837–844. IFAAMAS (2011)Google Scholar
  46. 46.
    Erdélyi, G., Rothe, J.: Control complexity in fallback voting. In: Proceedings of Computing: the 16th Australasian Theory Symposium, vol. 32, no. 8, pp. 39–48. Conferences in Research and Practice in Information Technology Series. Australian Computer Society (2010)Google Scholar
  47. 47.
    Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 366–370. IOS Press (2008)Google Scholar
  48. 48.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)CrossRefGoogle Scholar
  49. 49.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of manipulative attacks in nearly single-peaked electorates. In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 228–237. ACM Press (2011)Google Scholar
  50. 50.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks on elections. J. Artif. Intell. Res. 40, 305–351 (2011)MATHMathSciNetGoogle Scholar
  51. 51.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35, 275–341 (2009)MATHMathSciNetGoogle Scholar
  52. 52.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: A richer understanding of the complexity of election systems. In: Ravi, S., Shukla, S. (eds.) Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, chap. 14, pp. 375–406. Springer (2009)Google Scholar
  53. 53.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. Inf. Comput. 209(2), 89–107 (2011)MATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Copeland voting: ties matter. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 983–990. IFAAMAS (2008)Google Scholar
  55. 55.
    Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Manipulation of Copeland elections. In: Proceedings of the 9th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 367–374. IFAAMAS (2010)Google Scholar
  56. 56.
    Faliszewski, P., Procaccia, A.: AI’s war on manipulation: are we winning? AI Mag. 31(4), 53–64 (2010)Google Scholar
  57. 57.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. EATCS Texts in Theoretical Computer Science. Springer-Verlag (2006)Google Scholar
  58. 58.
    Friedgut, E., Kalai, G., Nisan, N.: Elections can be manipulated often. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pp. 243–249. IEEE Computer Society (2008)Google Scholar
  59. 59.
    Friedgut, E., Keller, N., Kalai, G., Nisan, N.: A quantitative version of the Gibbard–Satterthwaite theorem for three alternatives. SIAM J. Comput. 40(3), 934–952 (2011)MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Gailmard, S., Patty, J., Penn, E.: Arrow’s theorem on single-peaked domains. In: Aragonés, E., Beviá, C., Llavador, H., Schofield, N. (eds.) The Political Economy of Democracy, pp. 335–342. Fundación BBVA (2009)Google Scholar
  61. 61.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  62. 62.
    Gasarch, W.: The \({\ensuremath{\mathrm{P}}} =\,? \,{\ensuremath{\mathrm{NP}}}\) poll. SIGACT News 33(2), 34–47 (2002)CrossRefGoogle Scholar
  63. 63.
    Gehrlein, W., Berg, S.: The effect of social homogeneity on coincidence probabilities for pairwise proportional lottery and simple majority rules. Soc. Choice Welf. 9(4), 361–372 (1992)MATHMathSciNetGoogle Scholar
  64. 64.
    Gibbard, A.: Manipulation of voting schemes. Econometrica 41(4), 587–601 (1973)MATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Goldreich, O.: Notes on Levin’s theory of average-case complexity. Tech. Rep. TR97-058. Electronic Colloquium on Computational Complexity (1997)Google Scholar
  66. 66.
    Hemaspaandra, E., Hemaspaandra, L.: Dichotomy for voting systems. J. Comput. Syst. Sci. 73(1), 73–83 (2007)MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for election manipulation problems. In: Proceedings of the 30th Annual Symposium on Theoretical Aspects of Computer Science, pp. 377–388. Leibniz-Zentrum für Informatik (2013)Google Scholar
  68. 68.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)MATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Raising NP lower bounds to parallel NP lower bounds. SIGACT News 28(2), 2–13 (1997)CrossRefGoogle Scholar
  70. 70.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Hybrid elections broaden complexity-theoretic resistance to control. Math. Log. Q. 55(4), 397–424 (2009)MATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    Hemaspaandra, L., Williams, R.: An atypical survey of typical-case heuristic algorithms. SIGACT News 43(4), 71–89 (2012)Google Scholar
  73. 73.
    Homan, C., Hemaspaandra, L.: Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. J. Heuristics 15(4), 403–423 (2009)MATHCrossRefGoogle Scholar
  74. 74.
    Isaksson, M., Kindler, G., Mossel, E.: The geometry of manipulation: a quantitative proof of the Gibbard–Satterthwaite theorem. In: Proceedings of the 51st IEEE Symposium on Foundations of Computer Science, pp. 319–328. IEEE Computer Society (2010)Google Scholar
  75. 75.
    Isaksson, M., Kindler, G., Mossel, E.: The geometry of manipulation—a quantitative proof of the Gibbard–Satterthwaite theorem. Combinatorica 32(2), 221–250 (2012)MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedings of the Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling, pp. 124–129 (2005)Google Scholar
  77. 77.
    Korf, R.: From approximate to optimal solutions: a case study of number partitioning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 266–272 (1995)Google Scholar
  78. 78.
    Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial time reducibilities. Theor. Comput. Sci. 1(2), 103–124 (1975)MATHMathSciNetCrossRefGoogle Scholar
  79. 79.
    Lenstra Jr., H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)MATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Lepelley, D.: Constant scoring rules, Condorcet criteria, and single-peaked preferences. Economic Theory 7(3), 491–500 (1996)MATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Levin, L.: Average case complete problems. SIAM J. Comput. 15(1), 285–286 (1986)MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    Lindner, C., Rothe, J.: Fixed-parameter tractability and parameterized complexity, applied to problems from computational social choice. In: Holder, A. (ed.) Mathematical Programming Glossary. INFORMS Computing Society (2008)Google Scholar
  83. 83.
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410(27–29), 2746–2753 (2009)MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Liu, H., Zhu, D.: Parameterized complexity of control problems in maximin election. Inf. Process. Lett. 110(10), 383–388 (2010)MATHCrossRefGoogle Scholar
  85. 85.
    Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference data. In: Proceedings of the 2nd International Conference on Algorithmic Decision Theory, pp. 165–177. Lecture Notes in Artificial Intelligence #6992. Springer-Verlag (2011)Google Scholar
  86. 86.
    McCabe-Dansted, J., Pritchard, G., Slinko, A.: Approximability of Dodgson’s rule. Soc. Choice Welf. 31(2), 311–330 (2008)MATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    McCabe-Dansted, J., Slinko, A.: Exploratory analysis of similarities between common social choice rules. Group Decis. Negot. 15, 77–107 (2006)CrossRefGoogle Scholar
  88. 88.
    Meir, R., Procaccia, A., Rosenschein, J., Zohar, A.: Complexity of strategic behavior in multi-winner elections. J. Artif. Intell. Res. 33, 149–178 (2008)MATHMathSciNetGoogle Scholar
  89. 89.
    Menton, C.: Normalized range voting broadly resists control. Computing Research Repository (2012). Tech. Rep. arXiv:1005.5698 [cs.GT]. April 25, 2011. Revised June 26, 2012
  90. 90.
    Mossel, E., Rácz, M.: Election manipulation: the average case. ACM SIGecom Exchanges 11(2), 22–24 (2012)CrossRefGoogle Scholar
  91. 91.
    Mossel, E., Rácz, M.: A quantitative Gibbard–Satterthwaite theorem without neutrality. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 1041–1060. ACM (2012)Google Scholar
  92. 92.
    Nanson, E.: Methods of election. Proc. R. Soc. Vic. 19, 197–240 (1882)Google Scholar
  93. 93.
    Narodytska, N., Walsh, T., Xia, L.: Manipulation of Nanson’s and Baldwin’s rules. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 713–718. AAAI Press (2011)Google Scholar
  94. 94.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  95. 95.
    Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM J. Comput. 20(3), 471–483 (1991)MATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Procaccia, A.: Can approximation circumvent Gibbard-Satterthwaite? In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 836–841 (2010)Google Scholar
  97. 97.
    Procaccia, A., Rosenschein, J.: Average-case tractability of manipulation in voting via the fraction of manipulators. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 718–720 (2007). Short paperGoogle Scholar
  98. 98.
    Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity of manipulating elections. J. Artif. Intell. Res. 28, 157–181 (2007)MATHMathSciNetGoogle Scholar
  99. 99.
    Reisch, Y.: Das Manipulationsproblem für Bucklin–Wahlen. Bachelor thesis, Heinrich-Heine-Universität Düsseldorf, Institut für Informatik, Düsseldorf, Germany (2012)Google Scholar
  100. 100.
    Rothe, J., Schend, L.: Control complexity in Bucklin, fallback, and plurality voting: an experimental approach. In: Proceedings of the 11th International Symposium on Experimental Algorithms, pp. 356–368. Lecture Notes in Computer Science #7276. Springer-Verlag (2012)Google Scholar
  101. 101.
    Rothe, J., Schend, L.: Control complexity in Bucklin, fallback, and plurality voting: an experimental approach. Computing Research Repository (2012). Tech. Rep. arXiv:1203.3967v1 [cs.GT]. March 18, 2012. Revised August 20, 2012
  102. 102.
    Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)MATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    Schöning, U.: Complete sets and closeness to complexity classes. Math. Syst. Theory 19(1), 29–42 (1986)MATHCrossRefGoogle Scholar
  104. 104.
    Slinko, A.: On asymptotic strategy-proofness of classical social choice rules. Theory Decis. 52(4), 389–398 (2002)MATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    Slinko, A.: On asymptotic strategy-proofness of the plurality and the run-off rules. Soc. Choice Welf. 19(2), 313–324 (2002)MATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    Slinko, A.: How large should a coalition be to manipulate an election? Math. Soc. Sci. 47(3), 289–293 (2004)MATHMathSciNetGoogle Scholar
  107. 107.
    Tideman, N.: Independence of clones as a criterion for voting rules. Soc. Choice Welf. 4(3), 185–206 (1987)MATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)Google Scholar
  109. 109.
    Walsh, T.: Where are the really hard manipulation problems? The phase transition in manipulating the veto rule. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 324–329. IJCAI (2009)Google Scholar
  110. 110.
    Walsh, T.: An empirical study of the manipulability of single transferable voting. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 257–262. IOS Press (2010)Google Scholar
  111. 111.
    Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer-Verlag (1997)Google Scholar
  112. 112.
    Wang, J.: Average-case intractable NP problems. In: Du, D., Ko, K. (eds.) Advances in Languages, Algorithms, and Complexity, pp. 313–378. Kluwer Academic Publishers (1997)Google Scholar
  113. 113.
    Xia, L., Conitzer, V.: Generalized scoring rules and the frequency of coalitional manipulability. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 109–118. ACM Press (2008)Google Scholar
  114. 114.
    Xia, L., Conitzer, V.: A sufficient condition for voting rules to be frequently manipulable. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 99–108. ACM Press (2008)Google Scholar
  115. 115.
    Xia, L., Conitzer, V., Procaccia, A.: A scheduling approach to coalitional manipulation. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 275–284. ACM Press (2010)Google Scholar
  116. 116.
    Xia, L., Zuckerman, M., Procaccia, A., Conitzer, V., Rosenschein, J.: Complexity of unweighted coalitional manipulation under some common voting rules. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 348–353. IJCAI (2009)Google Scholar
  117. 117.
    Zuckerman, M., Lev, O., Rosenschein, J.: An algorithm for the coalitional manipulation problem under maximin. In: Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 845–852. IFAAMAS (2011)Google Scholar
  118. 118.
    Zuckerman, M., Procaccia, A., Rosenschein, J.: Algorithms for the coalitional manipulation problem. Artif. Intell. 173(2), 392–412 (2009)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für InformatikHeinrich-Heine-Univ. DüsseldorfDüsseldorfGermany

Personalised recommendations