Query answering under probabilistic uncertainty in Datalog+ / − ontologies

Abstract

The recently introduced Datalog+ / − family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and is set to play a central role in the context of query answering and information extraction for the Semantic Web. Recently, it has become apparent that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency and incompleteness, uncertainty resulting from automatically processing Web data, as well as uncertainty stemming from the integration of multiple heterogeneous data sources. In this paper, we take an important step in this direction by developing a probabilistic extension of Datalog+ / −. This extension uses Markov logic networks as the underlying probabilistic semantics. Here, we focus especially on scalable algorithms for answering threshold queries, which correspond to the question “what is the set of all ground atoms that are inferred from a given probabilistic ontology with a probability of at least p?”. These queries are especially relevant to Web information extraction, since uncertain rules lead to uncertain facts, and only information with a certain minimum confidence is desired. We present several algorithms, namely a basic approach, an anytime one, and one based on heuristics, which is guaranteed to return sound results. Furthermore, we also study inconsistency in probabilistic Datalog+ / − ontologies. We propose two approaches for computing preferred repairs based on two different notions of distance between repairs, namely symmetric and score-based distance. We also study the complexity of the decision problems corresponding to computing such repairs, which turn out to be polynomial and NP-complete in the data complexity, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings PODS-1999, pp. 68–79. ACM Press (1999)

  2. 2.

    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

  3. 3.

    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14(1), 149–180 (1995)

    Article  MathSciNet  Google Scholar 

  4. 4.

    Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. In: Proc. of LPNMR, pp. 21–33 (2004)

  5. 5.

    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Proceedings ICALP-1981. LNCS, vol. 115, pp. 73–85. Springer (1981)

  6. 6.

    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5), 34–43 (2002)

    Article  Google Scholar 

  7. 7.

    Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective heuristic for repairing constraints by value modification. In: Proceedings SIGMOD-2005, pp. 143–154. ACM Press (2005)

  8. 8.

    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. In: Proceedings KR-2008, pp. 70–80. AAAI Press (2008)

  9. 9.

    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

    Article  Google Scholar 

  10. 10.

    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+ / −: a family of logical knowledge representation and query languages for new applications. In: Proceedings LICS-2010, pp. 228–242. IEEE Computer Society (2010)

  11. 11.

    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

    Article  Google Scholar 

  12. 12.

    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings STOC-1977, pp. 77–90. ACM Press (1977)

  13. 13.

    Chomicki, J.: Consistent query answering: five easy pieces. In: Proceedings ICDT-2007. LNCS, vol. 4353, pp. 1–17. Springer (2007)

  14. 14.

    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proceedings PODS-2008, pp. 149–158. ACM Press (2008)

  15. 15.

    Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer (2009)

  16. 16.

    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: Proceedings ICDE-2011, pp. 315–326. IEEE Computer Society (2011)

  18. 18.

    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in probabilistic Datalog+ / − ontologies. In: Proceedings SUM-2011. LNCS, vol. 6929, pp. 401–414. Springer (2011)

  19. 19.

    Hansson, S.O.: Kernel contraction. J. Symb. Log. 59(3), 845–859 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Hansson, S.O.: Semi-revision. J. Appl. Non-Class. Log. 7(2), 151–175 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Heinsohn, J.: Probabilistic description logics. In: Proceedings UAI-1994, pp. 311–318 (1994)

  22. 22.

    Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A probabilistic database management system. In: Proceedings SIGMOD-2009, pp. 1071–1074. ACM Press (2009)

  23. 23.

    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Koch, C., Olteanu, D., Re, C., Suciu, D.: Probabilistic Databases. Morgan-Claypool (2011)

  25. 25.

    Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: a tractable probabilistic description logic. In: Proceedings AAAI-1997, pp. 390–397. AAAI Press / MIT Press (1997)

  26. 26.

    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Proceedings RR-2010. LNCS, vol. 6333, pp. 103–117. Springer (2010)

  27. 27.

    Lopatenko, A., Bertossi, L.E.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: Proceedings ICDT-2007. LNCS, vol. 4353, pp. 179–193. Springer (2007)

  28. 28.

    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. 29.

    Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled probabilistic description logics. In: Proc. of UAI, pp. 554–563. AUAI (2012)

  30. 30.

    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. 6(4), 291–308 (2008)

    Article  Google Scholar 

  31. 31.

    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)

    Article  Google Scholar 

  32. 32.

    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language: Semantics and Abstract Syntax. W3C Recommendation (2004). http://www.w3.org/TR/owl-semantics/

  33. 33.

    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

  34. 34.

    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. 35.

    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1/2), 107–136 (2006)

    Article  Google Scholar 

  37. 37.

    Schlobach, S.: Diagnosing terminologies. In: Proceedings AAAI-2005, pp. 670–675. AAAI Press / MIT Press (2005)

  38. 38.

    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings IJCAI-2003, pp. 355–362. Morgan Kaufmann (2003)

  39. 39.

    Staworko, S., Chomicki, J.: Consistent query answers in the presence of universal constraints. Inf. Syst. 35(1), 1–22 (2010)

    Article  Google Scholar 

  40. 40.

    Yang, Y., Calmet, J.: OntoBayes: an ontology-driven uncertainty model. In: Proceedings IAWTIC-2005, pp. 457–463. IEEE Computer Society (2005)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerardo I. Simari.

Additional information

Preliminary results of this article have been published in: Proceedings SUM-2011 [18].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gottlob, G., Lukasiewicz, T., Martinez, M.V. et al. Query answering under probabilistic uncertainty in Datalog+ / − ontologies. Ann Math Artif Intell 69, 37–72 (2013). https://doi.org/10.1007/s10472-013-9342-1

Download citation

Keywords

  • Datalog+/− ontologies
  • Reasoning under uncertainty
  • Inconsistency management
  • Markov logic networks

Mathematics Subject Classifications (2010)

  • 68T30
  • 68T37