Proof systems and transformation games

  • Yoram Bachrach
  • Michael Zuckerman
  • Michael Wooldridge
  • Jeffrey S. Rosenschein
Article

Abstract

We introduce Transformation Games (TGs), a form of coalitional game in which players are endowed with sets of initial resources, and have capabilities allowing them to derive certain output resources, given certain input resources. The aim of a TG is to generate a particular target resource; players achieve this by forming a coalition capable of performing a sequence of transformations from a combined set of initial resources to the target resource. TGs can model a number of natural settings, such as cooperative proof systems, where a collection of agents having different expertise work together to derive a proof for a target theorem, or supply chains, where agents cooperate to create a target product from base resources. After presenting the TG model, and discussing its interpretation, we consider possible restrictions on the transformation chain, resulting in different coalitional games. Following the basic model, we consider the computational complexity of several problems in TGs, such as testing whether a coalition wins, checking if a player is a dummy or a veto player, computing the core of the game, computing power indices, and checking the effects of possible restrictions on the coalition. Finally, we consider extensions to the model in which transformations have associated costs.

Keywords

Cooperative game theory Supply chains The core The Shapley value Power indices 

Mathematics Subject Classifications (2010)

91A12 68Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J., Hart, S. (eds.): Handbook of Game Theory, with Economic Applications, vol. 2. North-Holland, Amsterdam (1994)MATHGoogle Scholar
  2. 2.
    Aziz, H., Bachrach, Y., Elkind, E., Paterson, M.: False-name manipulations in weighted voting games. J. Artif. Intell. Res. 40(1), 57–93 (2011)MathSciNetMATHGoogle Scholar
  3. 3.
    Aziz, H., Lachish, O., Paterson, M., Savani, R.: Power indices in spanning connectivity games. In: Algorithmic Aspects in Information and Management, pp. 55–67 (2009)Google Scholar
  4. 4.
    Aziz, H., Paterson, M.: False name manipulations in weighted voting games: splitting, merging and annexation. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 409–416. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  5. 5.
    Babaioff, M., Walsh, W.E.: Incentive-Compatible, Budget-Balanced, yet Highly Efficient Auctions for Supply Chain Formation. Decision Support Systems (2005)Google Scholar
  6. 6.
    Bachrach, Y.: Honor among thieves: collusion in multi-unit auctions. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 617–624. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  7. 7.
    Bachrach, Y.: The least-core of threshold network flow games. Math. Found. Comput. Sci. 1, 36–47 (2011)Google Scholar
  8. 8.
    Bachrach, Y., Elkind, E.: Divide and conquer: false-name manipulations in weighted voting games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 975–982. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  9. 9.
    Bachrach, Y., Elkind, E., Faliszewski, P.: Coalitional voting manipulation: a game-theoretic perspective. In: The 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 49–54 (2011)Google Scholar
  10. 10.
    Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein, J.S.: The cost of stability in coalitional games. In: Algorithmic Game Theory, pp. 122–134 (2009)Google Scholar
  11. 11.
    Bachrach, Y., Kash, I., Shah, N.: Agent failures in totally balanced games and convex games. In: Proceedings of the 8th Workshop on Internet and Network Economics (2012)Google Scholar
  12. 12.
    Bachrach Y., Key, P., Zadimoghaddam, M.: Collusion in VCG path procurement auctions. In: Internet and Network Economics, pp. 38–49 (2010)Google Scholar
  13. 13.
    Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices: theoretical and empirical analysis. Journal of Autonomous Agents and Multi-Agent Systems 20(2), 105–122 (2010)CrossRefGoogle Scholar
  14. 14.
    Bachrach, Y., Meir, R., Feldman, M., Tennenholtz, M.: Solving cooperative reliability games. UAI (2011)Google Scholar
  15. 15.
    Bachrach, Y., Meir, R., Jung, K., Kohli, P.: Coalitional structure generation in skill games. In: Proceedings of the 24th Conference on Artificial Intelligence (AAAI-2010) (2010)Google Scholar
  16. 16.
    Bachrach, Y., Meir, R., Zuckerman, M., Rothe, J., Rosenschein, J.S.: The cost of stability in weighted voting games. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 1289–1290. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  17. 17.
    Bachrach, Y., Porat, E.: Path disruption games. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 1123–1130. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  18. 18.
    Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: AAMAS-08 (2008)Google Scholar
  19. 19.
    Bachrach, Y., Rosenschein, J.S.: Power in threshold network flow games. Journal of Autonomous Agents and Multi-Agent Systems 18(1), 106–132 (2009)CrossRefGoogle Scholar
  20. 20.
    Bachrach, Y., Rosenschein, J.S., Porat, E.: Power and stability in connectivity games. In: AAMAS-08 (2008)Google Scholar
  21. 21.
    Bachrach, Y., Zuckerman, M., Wooldridge, M., Rosenschein, J.S.: Proof systems and transformation games. Math. Found. Comput. Sci. 1, 78–89 (2010)Google Scholar
  22. 22.
    Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)Google Scholar
  23. 23.
    Cerquides, J., Endriss, U., Giovannucci, A., Rodríguez-Aguilar, J.A.: Bidding languages and winner determination for mixed multi-unit combinatorial auctions. Institute for Logic, Language and Computation (ILLC), University of Amsterdam (2006)Google Scholar
  24. 24.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Proceedings of the 3rd International Conference on Embedded Software (EMSOFT) (LNCS vol. 2855), pp. 117–133. Springer-Verlag, Berlin, Germany (2003)Google Scholar
  25. 25.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan & Claypool (2011)Google Scholar
  26. 26.
    Chen, R., Roundy, R., Zhang, R., Janakiraman, G.: Efficient auction mechanisms for supply chain procurement. Manage. Sci. 51(3), 467–482 (2005)MATHCrossRefGoogle Scholar
  27. 27.
    Conitzer, V., Sandholm, T.: Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains. In: Proc. of AAAI-04 (2004)Google Scholar
  28. 28.
    Conitzer, V., Sandholm, T.: Complexity of determining nonemptiness of the core. In: Proceedings ACM EC-03, pp. 230–231 (2003)Google Scholar
  29. 29.
    Cormen, T.H.: Introduction to Algorithms. The MIT Press (2001)Google Scholar
  30. 30.
    de Kok, A.G., Graves, S.C.: Information sharing and supply chain coordination. In: Supply Chain Management: Design, Coordination and Operation, p. 341 (2003)Google Scholar
  31. 31.
    Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Denzinger, J., Kronenburg, M.: Planning for distributed theorem proving. In: Proc. KI-96 (LNAI vol. 1137), pp. 43–56 (1996)Google Scholar
  33. 33.
    Dinar, A., Ratner, A., Yaron, D.: Evaluating cooperative game theory in water resources. Theory Decis. 32(1), 1–20 (1992)MATHCrossRefGoogle Scholar
  34. 34.
    Downey, R.G., Fellows, M.R., Victoria University of Wellington. Mathematics Dept.: Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput. 24(4), 873–921 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Dunne, P.E., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative boolean games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1015–1022. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  36. 36.
    Elkind, E., Goldberg, L., Goldberg, P., Wooldridge, M.: Computational complexity of weighted threshold games. In: AAAI-2007 (2007)Google Scholar
  37. 37.
    Engel, Y., Brafman, R., Domshlak, C., Tennenholtz, M.: Planning games. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (2009)Google Scholar
  38. 38.
    Ephrati, E., Pollack, M.E., Rosenschein, J.S.: A tractable heuristic that maximizes global utility through local plan combination. In: The 1st International Conference on Multiagent Systems, pp. 94–101. San Francisco, California (1995)Google Scholar
  39. 39.
    Ephrati, E., Rosenschein, J.S.: A heuristic technique for multiagent planning. Ann. Math. Artif. Intell. 20, 13–67. Spring (1997)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Faliszewski, P., Hemaspaandra, L.: The complexity of power-index comparison. In: Algorithmic Aspects in Information and Management, pp. 177–187 (2008)Google Scholar
  41. 41.
    Fisher, M., Wooldridge, M.: Distributed problem-solving as concurrent theorem proving. In: Multi-Agent Rationality MAAMAW-97. Springer-Verlag, Berlin, Germany (1997)Google Scholar
  42. 42.
    Gabarro, J., Garcia, A., Clint, M., Kilpatrick, P., Stewart, A.: Bounded site failures: an approach to unreliable grid environments. In: Making Grids Work, pp. 175–187 (2008)Google Scholar
  43. 43.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  44. 44.
    Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers, San Mateo, CA (1987)MATHGoogle Scholar
  45. 45.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann Publishers, San Mateo, CA (2004)MATHGoogle Scholar
  46. 46.
    Gillies, D.B.: Some theorems on n-person games. PhD thesis, Princeton University (1953)Google Scholar
  47. 47.
    Giovannucci, A., Rodriguez-Aguilar, J.A., Cerquides, J., Endriss, U.: Winner determination for mixed multi-unit combinatorial auctions via petri nets. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, p. 104. ACM (2007)Google Scholar
  48. 48.
    Giovannucci, A., Rodriguez-Aguilar, J.A., Vinyals, M., Cerquides, J., Endriss, U.: Mixed multi-unit combinatorial auctions for supply chain management. ACM SIGecom Exchanges 7(1), 58–60 (2007)CrossRefGoogle Scholar
  49. 49.
    Giovannucci, A., Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: Computationally-efficient winner determination for mixed multi-unit combinatorial auctions. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1071–1078. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  50. 50.
    Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50(1), 1–102 (1987)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Granot, D., Huberman, G.: Minimum cost spanning tree games. Math. Program. 21(1), 1–18 (1981)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Harrenstein, P., van der Hoek, W., Meyer, J.J., Witteveen, C.: Boolean games. In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 287–298. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  53. 53.
    Lenat, D.B.: BEINGS: knowledge as interacting experts. In: IJCAI-75, pp. 126–133 (1975)Google Scholar
  54. 54.
    Li, L., Zhang, H.: Confidentiality and information sharing in supply chain coordination. Manage. Sci. 54(8), 1467–1481 (2008)MATHCrossRefGoogle Scholar
  55. 55.
    Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theor. Comp. Sci. 263(1–2), 305–310 (2001)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Meir, R., Bachrach, Y., Rosenschein, J.: Minimal subsidies in expense sharing games. In: Algorithmic Game Theory, pp. 347–358 (2010)Google Scholar
  57. 57.
    Meir, R., Rosenschein, J.S., Malizia, E.: Subsidies, stability, and restricted cooperation in coalitional games. In: Proc. of 22nd IJCAI (2011)Google Scholar
  58. 58.
    Meir, R., Tennenholtz, M., Bachrach, Y., Key, P.: Congestion games with agent failures. In: 26th AAAI Conference on Artificial Intelligence (2012)Google Scholar
  59. 59.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)Google Scholar
  60. 60.
    Ostrovsky, M.: Stability in supply chain networks. Am. Econ. Rev. 98(3), 897–923 (2008)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Owen, G.: Multilinear extensions and the Banzhaf Value. Nav. Res. Logist. Q. 22(4), 741–750 (1975)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Peleg, B., Sudholter, P.: Introduction to the Theory of Cooperative Games, 2nd edn. Springer-Verlag, Berlin, Germany (2002)Google Scholar
  63. 63.
    Penn, M., Polukarov, M., Tennenholtz, M.: Congestion games with failures. In: Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 259–268. ACM (2005)Google Scholar
  64. 64.
    Penn, M., Polukarov, M., Tennenholtz, M.: Congestion games with load-dependent failures: identical resources. Games. Econom. Behav. 67(1), 156–173 (2009)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Qiu, L.D., Tao, Z.: Policy on international r&d cooperation: subsidy or tax? Eur. Econ. Rev. 42(9), 1727–1750 (1998)Google Scholar
  66. 66.
    Resnick, E., Bachrach, Y., Meir, R., Rosenschein, J.: The cost of stability in network flow games. Math. Found. Comput. Sci. 1, 636–650 (2009)Google Scholar
  67. 67.
    Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6), 1163–1170 (1969)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Shapley, L.S.: A value for n-person games. In: Contrib. to the Theory of Games, pp. 31–40 (1953)Google Scholar
  69. 69.
    Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48, 787–792 (1954)CrossRefGoogle Scholar
  70. 70.
    Sheu, J.B., Chou, Y.H., Hu, C.C.: An integrated logistics operational model for green-supply chain management. Transp. Res., Part E Logist. Trans. Rev. 41(4), 287–313 (2005)CrossRefGoogle Scholar
  71. 71.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge, England (2008)CrossRefGoogle Scholar
  72. 72.
    Shrot, T., Aumann, Y., Kraus, S.: On agent types in coalition formation problems. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 757–764. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  73. 73.
    Simatupang, T.M., Wright, A.C., Sridharan, R.: The knowledge of coordination for supply chain integration. Bus. Process. Manag. J. 8(3), 289–308 (2002)CrossRefGoogle Scholar
  74. 74.
    Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2002)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Voorneveld, M., Grahn, S.: Cost allocation in shortest path games. Math. Method Oper. Res. 56(2), 323–340 (2002)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Wagman, L., Conitzer, V.: Optimal false-name-proof voting rules with costly voting. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 190–195 (2008)Google Scholar
  77. 77.
    Wooldridge, M., Dunne, P.E.: On the computational complexity of coalitional resource games. Artif. Intell. 170(10), 853–871 (2006)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., Iwasaki, A.: Coalitional games in open anonymous environments. In: IJCAI-05 (2005)Google Scholar
  79. 79.
    Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota in weighted voting games. In: The 23rd National Conference on Artificial Intelligence (AAAI-2008) (2008)Google Scholar
  80. 80.
    Zuckerman, M., Faliszewski, P., Conitzer, V., Rosenschein, J.: An NTU cooperative game theoretic view of manipulating elections. In: Internet and Network Economics, pp. 363–374 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yoram Bachrach
    • 1
  • Michael Zuckerman
    • 2
  • Michael Wooldridge
    • 3
  • Jeffrey S. Rosenschein
    • 2
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.Hebrew UniversityJerusalemIsrael
  3. 3.University of OxfordOxfordUK

Personalised recommendations